
cba

Mathias Weske, Judith Michael (Hrsg.): Modellierung 2024,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2024 83

Transforming Object-Centric Process Models into BPMN 2.0
Models in the PHILharmonicFlows Framework

Marius Breitmayer 1, Lisa Arnold 1, Marko Pejic 1, Manfred Reichert 1

Abstract: Business processes can be modeled using a plethora of different paradigms including
activity-centric (e.g., imperative, declarative), and data-centric processes. The former focus on the
process activities to be executed as well as their execution order and constraints, whereas the latter
deal with the data required to progress during process execution. Both representations, however,
allow describing the same process, but from different viewpoints. Consequently, a transformation
between process representations based on the different paradigms yields promising perspectives for
enabling a holistic view on both the behavior and the data perspective of a process and fosters a
common understanding of different paradigms. This paper presents an approach for transforming
object-centric processes (i.e., object lifecycle processes and their interactions) into corresponding
activity-centric representations modeled in terms of BPMN 2.0. We present seven transformation
rules for mapping an object- to an activity-centric process, illustrated along a running example. We
evaluate the approach based on a proof-of-concept implementation that can automatically perform
the necessary transformations and has been applied in multiple scenarios. Overall, our approach
for transforming object-centric processes into BPMN 2.0 models provides new insights into the
relationship between the two paradigms and enables a more flexible and effective way of modeling
business processes in general.

Keywords: Object-centric Process; Data-centric Process; Activity-centric Process; Process Model
Transformation

1 Introduction

Process-aware Information Systems (PAISs) are based on executable business process
models expressed in terms of the activity-centric paradigm [DvTH05]. In the latter, a
process model comprises a set of connected black-box activities that represent units of work
or sub-processes, specified with an imperative language (e.g., BPMN 2.0). At runtime, the
completion of these activities drives process execution. However, many processes (e.g.,
unstructured, and knowledge-intensive processes [Si09]) are data-centric, requiring the
treatment of data as a first-class citizen at both design- and run-time. Due to the insufficient
integration of processes and data, traditional PAISs do not adequately support such processes.
To remedy this drawback, the data-centric paradigm has emerged [St19]. As opposed to
activity-centric processes, the available data (values) drives process execution. Usually,
approaches implementing this paradigm follow an object-centric approach, i.e., a business
1 Ulm University, Institute of Databases and Information Systems, Helmholtzstraße 16, 89081 Ulm, Germany

firstname.lastname@uni-ulm.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:firstname.lastname@uni-ulm.de

84 Marius Breitmayer, Lisa Arnold, Marko Pejic, Manfred Reichert

process corresponds to a multitude of concurrently processed business objects (of same or
different types) that interact with each other to reach the overall process goal. Examples of
object-centric process management approaches include case handling [vdAWG05], artifact-
centric processes [CH09], object-centric process mining [vdA19], and object-centric/-aware
process management [KR11]. Both activity-centric and object-centric paradigms have
their pros and cons. An object-centric process model may be useful for understanding
how data drives process execution, and how the various business objects involved in a
business process interact with each other. In contrast, an activity-centric process model
fosters our understanding on how work is executed. In general, the same process may be
described from both viewpoints (i.e., object- and activity-centric), thus allowing for a more
comprehensive approach of expressing process semantics and fostering process literacy.
Despite the relevance of the different viewpoints, there exists a gap regarding the common
use of activity- and object-centric process management approaches.

The contribution of this paper is twofold. On the one hand, we provide a conceptual approach
for transforming object-centric processes (i.e., a PHILharmonicFlows process model) into
an activity-centric representation (i.e., BPMN 2.0). As a benefit, the strengths of both
paradigms can be exploited, increasing overall process information provided by the two
representations. Furthermore, the approach allows for a more flexible and effective way of
modeling processes, improving their compatibility and comparability. On the other hand,
the paper provides valuable insights into how such transformation can be automatically
performed using the FLOWS2BPMN approach.

This paper is structured as follows: Section 2 introduces fundamentals. Section 3 describes
the proposed approach and presents the transformation rules of FLOWS2BPMN. Section 4
evaluates the approach and Section 5 relates it to existing works. Section 6 concludes the
paper with a summary and outlook.

2 Fundamentals

As pillar of this work, we use the object-centric process management approach PHILhar-
monicFlows which implements the fundamental concepts of the object-centric paradigm,
covering all lifecycle stages (i.e., modeling, execution, monitoring, and analysis/evolution).
PHILharmonicFlows provides the most comprehensive approach as shown in a literature
study [St19] as well as an integrated and usable implementation.

2.1 PHILharmonicFlows

In the PHILharmonicFlows approach, we developed a framework for data-centric and
-driven process management and enhanced it with the concept of objects. Generally, an
object-centric business process comprises multiple interacting objects (e.g., Job Offer,
Application, Review, and Interview) with each object representing a real-world business

Transforming Object-Centric Process Models into BPMN 2.0 Models 85

object. A (semantic) data model (see Fig. 1a) is used to organize all process-relevant
objects (including their attributes) as well as their semantic relations [KR11]. The latter also
consider cardinality constraints. Finally, object behavior (i.e., the data-driven processing
of the respective object lifecycle) is expressed in terms of a state-based object lifecycle
process model. Thereby, each state of a specific lifecycle process (e.g., the lifecycle process
of object Application in Fig. 1b comprises states Created, Sent, Checked, Accepted, and
Rejected) may comprise multiple steps. Each step refers to a specific object attribute to be
written before completing the respective state. After all required attributes (i.e., steps) of
the present state have assigned values, the object may transition to the next state, i.e., the
execution of a lifecycle process is data-driven.

EmployeeEmployeeEmployee

Job OfferJob Offer

ApplicationApplication

ApplicantApplicantApplicant

ReviewReview InterviewInterview

1:n 1:n

1:n

1:n

1:n

Object
Type

Object
Type

User
Type
User
Type

CardinalityCardinality

(a) PHILharmonicFlows Data Model

RejectedRejected

SentSent

CreatedCreated

AddressAddress

CVCV

Job OfferJob Offer

CheckedChecked

AcceptanceAcceptance

AcceptedAccepted

Assignment: Applicant

Assignment: Personnel Officer
IntroductionIntroduction

Send DateSend Date

Assignment: Applicant

[Acceptance] == true

[Acceptance] == false

Attribute
Step

Attribute
Step

Backwards TransitionBackwards Transition

TransitionTransition

External TransitionExternal Transition

User
Assignment

User
Assignment

Computation
Step

Computation
Step

Decision
Step

Decision
Step

Predicate
Step

Predicate
Step

Silent StepSilent Step

Silent StateSilent State

(b) Lifecycle of Object Application

Fig. 1: Simplified Data Model and Lifecycle Process

At runtime, each object may be instantiated multiple times with the corresponding lifecycle
process instances being executed concurrently [ASR21]. Furthermore, relations (e.g., the one
between an Application instance and a Review instance) may be instantiated multiple times,
enabling 1-to-many or many-to-many associations between individual object instances.
Overall, this results in a large relational process structure at runtime [SAR18b]. The
interactions between the various object instances of such a process structure, are managed
by a coordination process [SAR18a]. In Fig. 2, for example, an application may only be
rejected if either the review or the interview proposes rejection. Conversely, an application
is accepted if the job offer is closed, the application is checked, and the interview proposes
hiring the applicant. In a nutshell, the coordination process enables or prohibits objects to
change to another state depending on pre-defined constraints of that object in relation to the
states of other objects (see [SAR18a] for details).

2.2 Business Process Model and Notation

Business Process Model and Notation (BPMN) 2.0 constitutes an established standard for
representing business processes [Ko15]. BPMN is based on the activity-centric process

86 Marius Breitmayer, Lisa Arnold, Marko Pejic, Manfred Reichert

Review

Prepared

Review

Prepared

Review

Rejected

Review

Rejected

Review

Invited

Review

Invited

Self

Self
Application

Checked

Application

Checked

Bottom-Up

Interview

Prepared

Interview

Prepared

Transverse
Interview

Hired

Interview

Hired

Interview

Rejected

Interview

Rejected

Self

Self
Application

Accepted

Application

Accepted
Bottom-Up

Self-Transverse

Application

Rejected

Application

Rejected

Application

Rejected

Bottom-Up

Bottom-Up

Bottom-Up

Job Offer

Prepared

Job Offer

Prepared

Job Offer

Published

Job Offer

Published

Self
Application

Created

Application

Created

Top-Down Self
Application

Sent

Application

Sent

Job Offer

Closed

Job Offer

Closed

Bottom-Up

Top-Down

Job Offer

Removed

Job Offer

Removed

Job Offer

Filled

Job Offer

Filled

Bottom-Up

Self

Top-Down

Coordination
Step

Coordination
Step

Bottom-Up

Object TypeObject Type

PortPort

Coordination
Transition

Coordination
Transition

OR-SemanticOR-Semantic

AND-SemanticAND-Semantic

Fig. 2: Coordination Process Example Recruitment

management paradigm, providing a standardized multi-domain modeling notation [We19].
Generally, the completion of activities drives process execution, with the order in which
these activities are executed being managed by the control flow. The latter comprises
sequence flows, message flows, and gateways. In addition, data objects allow modeling
data and may be read or written by activities, enriching the latter with specific information.
Modeling the data perspective, however, is often neglected as activities are treated as
first-class citizens [Re12]. Fig. 3 depicts a simplified process model of a recruitment process
in which a Job Offer is created and published by a Personnel Officer. Then, Applicants may
create and sent their Application. Afterwards, a Department Expert evaluates the application
and either accepts or rejects it. Finally, the Applicant is notified. Note that the execution of
this process is driven by the execution of activities rather than the data becoming available
(cf. Section 2.1).

En
te

rp
ri

se
En

te
rp

ri
se

P
er

so
n

n
el

O

ff
ic

er
P

er
so

n
n

el

O
ff

ic
er

A
p

p
lic

an
t

A
p

p
lic

an
t

D
ep

ar
tm

en
t

Ex
p

er
t

D
ep

ar
tm

en
t

Ex
p

er
t

Create
Job Offer

Publish
Job Offer

Create
Application

Send
Application

Evaluate
Application

Accept
Application

Reject
Application

Fig. 3: Example Process Recruitment in BPMN 2.0 (simplified)

3 Transformation Approach

The goal of FLOWS2BPMN, the approach we propose for transforming object-centric
process models to BPMN 2.0 models, has been three-fold: First, we developed a concept
for transforming object-centric processes into an activity-centric representation, i.e., a
BPMN 2.0 process model. Second, we implemented a proof-of-concept prototype capable
of automatically realizing this model transformation. Third, the transformation between
object-centric and activity-centric approaches enables a holistic view on business processes
and facilitates our understanding of processes expressed with these different paradigms. To
enable the transformation between object- and activity-centric processes, we derived a set of
transformation rules that allow transforming object types, lifecycle processes, coordination

Transforming Object-Centric Process Models into BPMN 2.0 Models 87

processes, and user assignments into a suitable BPMN 2.0 representation, enabling the
application of existing process management tools to object-centric processes.

Fig. 4a depicts the main components of the FLOWS2BPMN approach, which enables the
generic transformation of object-centric process models into BPMN 2.0 models.

The core of the approach comprises 7 transformation rules (TR), each belonging to one of
the following categories: Object Type Transformation, Lifecycle Process Transformation,
Coordination Process Transformation, and User Assignment Transformation. The Transfor-
mation procedure is illustrated by Fig. 4b. It describes the order in which the transformation
rules are applied to generate a BPMN 2.0 process model from an object-centric process
representation. The remainder of this section introduces the 7 transformation rules along
the running example of a recruitment process (cf. Sec 2) and the transformation procedure.

FLOWS2BPMN Approach

Object Type
Transformation

Lifecycle Process
Transformation

State Type
Transformation

Lifecycle Step Type
Transformation

TransitionType
Transformation

Backwards Transition
Type Transformation

Coordination Process
Transformation

User Assignment
Transformation

Coordination Step
Transformation

User Role
Transformation

Activity
Assignment

Process Transformation
Transformation

Algorithm

Notation
Implementation

Composition

Transformation Rules

(a) Main Components

FLOWS2BPMN
Transform lifecycle
processes

Transform coordination
processes

Transform user
assignments

UML Activity Diagram Notation

EndStart

Transform
lifecycle

processes

Transform
coordination
processes

Transform
user

assignments

Transform
objects

Transform
states

Transform
steps

Transform
transitions

Transform
backwards
transitions

Transform
coordination steps

Transform
user roles

Assign activities to
transformed user

roles

Call
Behavior

Action

PhF
Model

BPMN
Model

TR2

TR1 TR3

TR4

TR5

TR6

TR7

(b) Transformation Procedure

Fig. 4: The FLOWS2BPMN Approach

3.1 Object Type Transformation

TR1 (Object Type Transformation):
An object type of an object-centric process is mapped to a pool of a BPMN
collaboration diagram.

Transformation rule TR1 maps object types to BPMN elements. Each object type is
transformed into a separate pool. Note that the generation of a pool implies adding a start
and end event to it. As a consequence, we map different object types to different pools, each
having corresponding start and end events. Fig. 5 illustrates the application of TR1 to object
type Application. Generally, multiple instances of an object type may be created at runtime,
each being executed by a separate lifecycle process instance. In the transformation of object
types to BPMN pools, this is reflected by the use of multi-instance pools (MI pool), i.e.,
each pool generated by TR1 is tagged as a MI pool.

88 Marius Breitmayer, Lisa Arnold, Marko Pejic, Manfred Reichert

Object-centric

TR1

Activity-centric
Business Object

Application

A
pp

lic
at

io
n

MI Pool

Fig. 5: Example Object Type Transformation

3.2 Lifecycle Process Transformation

Based on TR1, each object type can be transformed to a multi-instance pool. The second step
of the transformation procedure (see Fig. 4b) then transforms each object lifecycle process
to a semantically corresponding BPMN 2.0 representation. This includes the transformation
of lifecycle states, steps (i.e., attributes), and transitions between them to corresponding
BPMN elements.

TR2 (State Type Transformation):
Each state type of the object lifecycle process is transformed into a BPMN activity.
Depending on the respective state type, this activity corresponds to an atomic task
or a sub-process reflecting the internal logic of the steps within an object state.
Additionally, activities write data objects that indicate the state of an object type.

Remember that a state of an object lifecycle process comprises a set of ordered steps, each
representing atomic actions (i.e., writing an attribute) of the object. In BPMN, this behavior
can be encapsulated by a sub-process. When transforming a state to BPMN elements, two
cases need to be distinguished:

1. The state comprises a number of connected steps that reflect the attributes to be written
(e.g., in a form) before leaving the state. In this case, the state is mapped to a (collapsed)
BPMN sub-process. Particularly, this sub-process requires the transformation of the
steps within the respective state as well (see Fig. 6b and TR3).

2. The state is silent, i.e., it does not comprise any step and action respectively, (e.g., the
silent state Accepted in Fig. 6a). Consequently, representing the internal logic of the
state is not required. In this case, the state is transformed into a BPMN task.

The resulting BPMN process model reflects the state-based view of the lifecycle process
(see Fig. 1b). Expanding sub-processes, in turn, displays the internal logic of a state and
its respective steps (see TR3). Consequently, both granularity levels of an object lifecycle
process (i.e., state and step level) can be represented. Moreover, each created BPMN activity
is connected to a data object that refers to the object in the corresponding state. Note that
this data object corresponds to a multi-instance data object.

Lifecycle steps represent atomic actions to write or update object attributes, e.g., by filling in
form fields or sensing a data value from the physical environment. Mapping a step to BPMN
results in a task (i.e., atomic activity), embedded in the respective sub-process generated

Transforming Object-Centric Process Models into BPMN 2.0 Models 89
Object-centric Activity-centric

Silent Step
Application
[Accepted]

Accepted

MI Data
Object

Accept
Application

Silent State Task

TR2

(a) Transforming Silent State Type

Application
[Created]

Object-centric

Created
A B C D TR2

MI Data
ObjectNon-silent

State
Ad-hoc Sub-

Process

Activity-centric

Non-silent
Step

A B C D

Create Application

(b) Transforming Non-silent State Type

Fig. 6: Example Lifecycle State Type Transformation

by TR2. The created sub-process and its tasks reflect the attributes to be updated when
processing an object state as well as the order (including if-then-else constraints) in which
the corresponding attribute values may be written during runtime. Note that, for example,
this information may be exploited by process implementers to create corresponding forms
(which are auto-generated in PHILharmonicFlows).

TR3 (Lifecycle Step Type Transformation):
When mapping a lifecycle step to a BPMN element, different cases need to be
distinguished, depending on the properties of the step (cf. Fig 1b):
1. Attribute steps update object attributes and correspond to the default step

type. They are transformed to a BPMN task.
2. Computation steps enable the automatic computation of attribute values (e.g.,

the current date or a price including VAT). They are mapped to a Service
Task in BPMN.

3. Decision steps comprise predicate steps and are mapped to tasks.
4. Predicate steps enable choices during lifecycle process execution, i.e., the

respective object may transition to different successors depending on attribute
values. Predicate steps are not mapped to BPMN tasks, but to the labels of
the sequence flows outgoing from a predicate step.

5. Silent steps (i.e., steps without associated action) are represented by the state
generated in TR2 – no transformation is required.

In a nutshell, only attribute, computation, decision, and predicate steps need to be mapped
to the BPMN model. In particular, attribute and decision steps are mapped to tasks, whereas
computation steps are mapped to a service task. They further require the integration of data
in the BPMN model. For this purpose, each task is associated with a corresponding data
object in the BPMN model. As steps are allocated to states, these data objects exist within
the created sub-process. Note that these data objects are labelled as multi-instance data
objects. The mapping of steps to BPMN elements is depicted in Fig. 7.

Note that attribute values need not necessarily be provided in the pre-specified order of the
lifecycle process steps. Transitions between the steps of a state, therefore, only define a default
execution order of steps [SAR19], e.g., an applicant may upload her CV before providing

90 Marius Breitmayer, Lisa Arnold, Marko Pejic, Manfred Reichert

Application
[Created]

Object-centric

TR3

MI Data
Object

Non-silent State
Sub-Process
(Expanded)

Activity-centric

Step Level

Create Application

Job Offer Address Introduction CV

Read
Job Offer

Write
Address

Write
Introduction

Write
CV

Application.
Job Offer

Application.
Address

Application.
Introduction

Application.
CVAd-hoc

Marker

Created

Fig. 7: Example Lifecycle Step Type Transformation Application State Created

her address when creating an application. Consequently, the sub-process representing a state
may be declared as a BPMN ad-hoc activity, i.e., the order in which attributes are written is
arbitrary. In particular, the sub-process may only contain activities, data objects, sequence
flows, and gateways. If sequence flows are omitted, the execution order of the internal tasks
will be arbitrary. Consequently, the flexible execution (i.e., arbitrary order of how attributes
are written) of the lifecycle process is adopted in the resulting BPMN model. Note that we
greyed out the (yet to-be transformed) sequence flows in Fig. 7 as they are not mandatory,
but optional. Again, note that the created sub-process provides a specification to process
engineers that is useful for implementing the process (e.g., user form design). In general,
the transitions of a lifecycle process correspond to sequence flows of a BPMN model as
both possess the same semantics in their respective process modeling paradigm. Mapping
the exact semantics of a transition to a sequence flow, however, depends on its context.

TR4 (Transition Type Transformation):
A transition type is transformed into a sequence flow. Expressions specified in
lifecycle predicate steps are mapped to labels of the corresponding sequence flows.
To minimize the routing paths per element, exclusive gateways are generated to
group these sequence flows and to ensure that activities only have one incoming
and outgoing sequence flow.

More precisely, a sequence flow in the BPMN model must be solely labeled if the source
element of the transition corresponds to a predicate step (see TR3). In this case, the label of
the created sequence flow should correspond to the expression attached to the predicate step.
Fig. 8 shows the mapping of a predicate step to labeled sequence flows according to TR4.

Checked

Acceptance

Assignment: Personnel Officer

[Acceptance] == true

[Acceptance] == false

Transition Type
Text

Acceptance
== false

Acceptance
== true

Predicate Step Predicate

TR4
Acceptance

== false

Acceptance
== trueCheck

Application

Object-centric Activity-centric

Sequence Flow

Check
Application

Resolve

Fig. 8: Example Transition Type Transformation

Transforming Object-Centric Process Models into BPMN 2.0 Models 91

TR5 (Backwards Transition Type Transformation):
A backwards transition type of a lifecycle process is transformed to a loop in the
corresponding BPMN model.

Backwards transitions allow the users involved in the execution of a lifecycle process to
return to previous states. When mapping a backwards transition to a BPMN model, certain
activities of the BPMN model need to be repeated. For this purpose, each backwards
transition is mapped to a loop in the BPMN model. Fig. 9 illustrates this transformation.

Created

Collapsed
Sub-Process

Object-centric Activity-centric

Backwards
Transition Type

Sent Create
Application

Send
Application

Loop

TR5

Fig. 9: Example Backwards Transition Type Transformation

3.3 Coordination Process Transformation
The previous sections have introduced the transformation rules for object types and their
lifecycle processes. This section shows how interactions between different object lifecycle
processes are considered in the model transformation procedure. In PHILharmonicFlows,
an interaction between lifecycle processes refers to the states of different objects and is
managed by a coordination process (see Fig. 2) [SAR18a]. The latter comprises a number
of coordination steps of which each reflects a semantic relationship between object states.

TR6 (Coordination Process Transformation):
The information contained in a coordination process is transformed to BPMN
elements as well. In particular, this transformation considers the constraints attached
to the coordination steps of the coordination process, i.e., the semantics of each
individual coordination step needs to be mapped to its BPMN counterpart. For this
purpose, intermediate message events (catching) are applied to catch messages.
Moreover, intermediate parallel multiple events are used to catch multiple messages.
In turn, intermediate message events (throwing) enable sending messages. Finally,
event-based gateways allow coordinating alternative paths.

The semantics of a coordination step is defined by the ports associated with it as well as the
transitions connected to these ports (see Fig. 2). Different cases need to be distinguished:

1. Multiple ports attached to a coordination step reflect an (X)OR-semantics (cf.
coordination step Application Rejected in Fig. 2). State Rejected of object Application
may be only executed after executing one of the preceding states. In BPMN, we
realize this behavior using an Event-based Gateway. This transformation is depicted
in Fig. 10 1 .

92 Marius Breitmayer, Lisa Arnold, Marko Pejic, Manfred Reichert

2. Multiple transitions targeting at a single port of a coordination step express AND-
semantics. Consider coordination step Application Accepted in Fig. 2. Regarding this
step, multiple constraints (e.g., Job Offer Closed, Application Checked, and Interview
Hired in Fig. 2) need to be met. When mapping this behavior to a BPMN process
model, intermediate parallel multiple events are leveraged, i.e., process execution is
delayed upon arrival of corresponding messages. These messages are modeled via
intermediate message events (throwing) following the corresponding activities in the
respective (object) pool. This transformation is depicted in Fig. 10 2 .

3. If a coordination step has exactly one port with one incoming transition, the activation
of the state necessitates the previous completion of another state corresponding to a
different object (see coordination step Application Created in Fig. 2). Such behavior
can be expressed with BPMN using a message exchange, i.e., a particular coordinating
activity sends a message received by another coordination activity. For this purpose,
an intermediate message event (throwing) as well as an intermediate message event
(catching) need to be added to the process model. Note that the control flow of the
BPMN model is delayed until completing this message exchange. This transformation
is illustrated by Fig. 10 3 .

For object-centric processes these different semantics are not mutually exclusive. The actual
complexity might increase when using the various coordination constraints in combination.

In
te

rv
ie

w Hire
Interview

Reject
Interview

... ...

Intermediate
Parallel Multiple

Event

R
ev

ie
w Reject

Review
... ...

A
pp

lic
at

io
n

Reject
Application

Accept
Application

......Create
Application

3

Jo
b

O
ffe

r

... ...Publish
Job Offer

Close
Job Offer

2 1

Fig. 10: Example Coordination Process Transformation

3.4 User Assignment Transformation

To complete the transformation rules of the FLOWS2BPMN approach, the activities created
by the previous TRs need to be associated with their respective user roles. The lifecycle
process model associates each state with a user assignment, which determines the user roles
responsible for processing the respective state.

Transforming Object-Centric Process Models into BPMN 2.0 Models 93

TR7 (User Assignment Transformation):
A user role is transformed to a lane within a pool. Based on this transformation, a
human task (i.e., state) is assigned to that lane whose role corresponds to the user
assignment set out by the respective state of the lifecycle process model. A system
user role (lane) comprises non-assigned states.

We accomplish the transformation of user roles in a two-step procedure. First, we map
the user role to a new lane of the pool created by TR1. Further, we label the newly added
lane with the name of the respective user role. The activities of the corresponding pool
need to be assigned to their proper lanes. To be more precise, each task resulting from the
application of TR2 is assigned to the lane that represents the user role in the context of the
respective the state. In turn, lifecycle states without user assignments (see states Accepted
and Rejected in Fig. 1b) are executed by a software system. Modeling such behavior in
terms of BPMN requires an additional lane representing a System-user role. Similar to
user roles, this lane indicates that a (computer) system auto-executes the activities of this
lane. Fig. 11 illustrates the transformation of object Application (cf. Fig. 1b) including user
assignments and collapsed sub-processes.

La
ne

La
ne

La
ne

PoolA
pp

lic
at

io
n

A
pp

lic
an

t

Create
Application

Send
Application

Sy
st

em

[Acceptance]
== false

[Acceptance]
== true

Accept
Application

Reject
Application

Pe
rs

on
ne

l O
ffi

ce
r

Check
Application

Fig. 11: Example User Assignment Transformation

4 Evaluation
4.1 Proof-of-concept Prototype
We implemented a proof-of-concept prototype that realizes the presented transformations.
It leverages standard data interchange formats for representing object-centric processes (i.e.,
JSON) and BPMN processes (i.e., XML) respectively. Generated BPMN process models
can be imported to any tool capable of visualizing BPMN models (e.g., Signavio, bpmn.io
or Camunda). The source code is available via GitHub2.

2 https://github.com/markopejic-git/Transforming-Object-Centric-Processes-into-BPMN

https://github.com/markopejic-git/Transforming-Object-Centric-Processes-into-BPMN

94 Marius Breitmayer, Lisa Arnold, Marko Pejic, Manfred Reichert

4.2 Case Studies
We conducted case studies in which we applied the transformation procedure to process
models of three different real-world scenarios initially modeled using the PHILharmon-
icFlows framework. Each of these object-centric process models focuses on the complexity
in different parts of the process model (e.g., objects, lifecycles, or coordination). Supple-
mentary material on PHILharmonicFlows, the different object-centric process models, and
the resulting BPMN process models are provided in a cloudstore3.
Recruitment The recruitment process served as a running example in this paper and
stems from a long-term collaboration we have had with an ERP software provider. In total,
the recruitment model comprises 4 object types, 2 user types, and 5 relations (see Fig. 1a).
Corresponding lifecycle processes consist of 20 states and 43 steps (see Fig. 1b for the
lifecycle of object Application), while the coordination includes 16 steps and 19 transitions
(see Fig. 2). This coordination process has the highest complexity as it includes a plethora
of coordination steps, various combinations of ports and transitions (cf. TR 6).
PHoodle The e-learning system PHoodle, an object- and process-centric information
system, we implemented with PHILharmonicFlows, includes 7 object types (e.g., Lecture,
Exercise, or Submission), 2 user types, 11 relations, and corresponding lifecycle processes.
The latter comprise 20 states and 52 steps. Moreover, a coordination process exists that
consists of 6 steps and 9 transitions. This process has also been applied in a real-world
deployment at Ulm University to organize the lecture, exercises, and exams of a course
over one semester. In this real-world scenario, Phoodle managed 2 teaching employees, 5
Exercises, 6 Tutors, 14 Downloads, 51 Tutorials, 128 Students, and 487 Submissions.
Diagnosis & Treatment The Diagnosis & Treatment process deals with the admission,
diagnosis, tests, treatment, and discharge of patients in a hospital scenario. The object-centric
process model comprises 3 object types, 2 user types, and 4 relations. Their corresponding
lifecycle processes contain 14 states and 22 steps. The coordination process consists of 10
steps and 10 transitions, and mainly focuses on the sequential coordination of objects.

4.3 Limitations
The presented approach faces several limitations:
1. The transformation requires the extended set of BPMN elements. On the one hand,

the extended set of BPMN elements allows reducing the number of process model
elements (i.e., model size and complexity). On the other, resulting models might be
harder to comprehend, especially for inexperienced modelers, and the syntax of the
extended BPMN elements might not fully match the one of the object-centric model.

2. Pools generated for each object according to TR1 do not fully conform with the
traditional representation of pools (i.e., participants) in BPMN. However, in the
context of object-centric processes, a variety of (interacting) objects participate in
the process rather than traditional participants (i.e., organizations or roles). In future
work, we will extend the approach to further address this issue.

3 https://cloudstore.uni-ulm.de/s/d9Mq3kBHbiyKNac

https://cloudstore.uni-ulm.de/s/d9Mq3kBHbiyKNac

Transforming Object-Centric Process Models into BPMN 2.0 Models 95

3. The multi-instance symbol in BPMN assumes that the number of instances is known
beforehand, which is not always the case in object-centric processes. In the running
example, the number of application object associated with a job offer might be
arbitrary. The latter corresponds to unbounded interleaving behavior, for which
BPMN does not have a special symbol.

4. The execution syntax of a lifecycle process state and the ad-hoc sub-process generated
by TR3 are not identical. The ad-hoc sub-process in BPMN specifies that the performer
determines the sequence and number of an activity. The sequence, in which the steps of
a lifecycle process are organized, specifies the guidance provided at runtime. However,
a lifecycle process state may be completed upon availability of all required values.
We incorporated the execution guidance of lifecycles through sequence flows within
the ad-hoc sub-process rather than losing this information during the transformation.

4.4 Benefits
The presented approach enables the exploration of object-centric process for modelers
unfamiliar with object-centric processes. The representation uses an established modeling
language (i.e., BPMN 2.0), facilitating the understanding of the fundamental differences
between the two process management paradigms. Especially, this is beneficial in education or
training, during which understanding the differences of the modeling paradigms is of utmost
importance. In a nutshell, the presented transformation might increase understandability
of object-centric processes in general. Furthermore, the representation of object-centric
processes in terms of BPMN enables applying a plethora of existing approaches for process
management to object-centric processes. Consequently, this further strengthens the use of
the object-centric process paradigm. This includes approaches towards modeling, analyzing,
and evolving & optimizing business processes [Du18].

5 Related Work
The presented work is related to process model transformations, especially between activity-
centric and data-centric process representations. Despite their fundamental differences,
activity- and data-centric processes are not mutually exclusive [Re12] and approaches often
combine existing principles. In Case Handling [vdAWG05], for example, activities are
completed upon provision of data and do not constitute atomic work units, i.e., process
execution is data-driven. The work presented in [Me13] enriches activities with SQL-
enabling data support.
[KLW08] formally defines activity-centric process models and presents an approach

for transforming activity- to information-centric models. UML state charts are used for
representing lifecycle processes. These state charts, however, have limited capabilities
regarding the communication between tasks and objects, i.e., coordination aspects are
neglected. The work presented in [EVG16] overcomes these issues by enabling parallelism
as well as event communication. However, processes are represented in terms of UML state
charts, and no explicit support for BPMN is provided. As opposed to [KLW08,EVG16],
the presented approach also considers the transformation of object coordination constraints
using message events in the resulting BPMN model.

96 Marius Breitmayer, Lisa Arnold, Marko Pejic, Manfred Reichert

A similar approach is presented in [MW14]. It allows transforming artifact- to activity-
centric models and vice versa, but requires intermediate steps (e.g., a synchronized object
lifecycle), potentially increasing complexity. Besides, no implementation is provided. Similar
to [KLW08], the approach lacks the integration of coordination constraints.
[SMW07] presents an approach for enabling users to define semantic correspondences

between different syntax elements using mapping operators, and to execute the transformation
between EPC and UML process models. Both EPC and UML process models represent
activity-centric process models. In contrast, our approach is able to automatically derive the
BPMN model without mapping operators specified by users.
[Es13] presents a framework for representing artifact-centric process models in UML. It
considers elements of artifact-centric process models (i.e., business artifacts, lifecycles,
services, and associations), similar to our approach’s consideration of different granularity
levels (i.e., data models, object lifecycles, and coordination processes). However, [Es13]
focuses representing artifact-centric elements in UML, rather than performing a complete
transformation of process models. Consequently, specific UML methods (e.g., state machines
and activity diagrams) are required for representing artifact-centric elements. In contrast,
our approach provides a complete transformation of all levels of granularity, integrating
them into one BPMN 2.0 process model.
[Ou06] presents an approach for transforming BPMN and UML processes to BPEL-based

workflows. However, no data-centric approaches were considered. In contrast, the presented
approach tackles the transformation of data-centric processes to BPMN. Finally, [KRG07]
presents an approach for generating compliant business process models from a set of
reference object lifecycles. Synchronization points between lifecycles need to be manually
identified first. In contrast, our approach derives coordination constructs based on the
information available from object-centric coordination processes (i.e., coordination steps).

6 Summary and Outlook
This paper presents an approach for transforming object-centric processes into activity-
centric processes with the latter being modeled in terms of BPMN. In particular, we want to
bridge the gap between the two paradigms. In detail, we introduced 7 transformation rules
that cover different aspects of object-centric processes (i.e., data model, lifecycle processes,
and coordination process) and enable their mapping to activity-centric process models
(i.e., BPMN 2.0). The technical feasibility of the automated transformation procedure was
demonstrated by a proof-of-concept prototype. Furthermore, we applied the transformation
to three processes of varying complexity and from different domains. In future work, we
will further enhance the transformation by examining the comprehensibility of the generated
BPMN 2.0 models, investigate different labels of object-centric processes, and simplify
the resulting model. Furthermore, we will enable the reverse transformation (i.e., mapping
BPMN 2.0 models to object-centric models) by inverting the transformation rules.

Transforming Object-Centric Process Models into BPMN 2.0 Models 97

Bibliography
[ASR21] Andrews, Kevin; Steinau, Sebastian; Reichert, Manfred: Enabling runtime flexibility in

data-centric and data-driven process execution engines. Inf Sys, 101:101447, 2021.

[CH09] Cohn, David; Hull, Richard: Business artifacts: A data-centric approach to modeling
business operations and processes. IEEE Data Eng Bull, 32(3):3–9, 2009.

[Du18] Dumas, Marlon; Rosa, Marcello La; Mendling, Jan; Reĳers, Hajo A.: Fundamentals of
Business Process Management. Springer, 2nd edition, 2018.

[DvTH05] Dumas, Marlon; van der Aalst, Wil M P; Ter Hofstede, Arthur H: Process-Aware
Information Systems. John Wiley & Sons, 2005.

[Es13] Estañol, Montserrat; Queralt, Anna; Sancho, Maria-Ribera; Teniente, Ernest: Artifact-
Centric Business Process Models in UML. volume 132, pp. 292–303, 01 2013.

[EVG16] Eshuis, Rik; Van Gorp, Pieter: Synthesizing data-centric models from business process
models. Computing, 98(4):345–373, 2016.

[KLW08] Kumaran, Santhosh; Liu, Rong; Wu, Frederick Y: On the Duality of Information-Centric
and Activity-Centric Models of Business Processes. In: Advanced Information Systems
Engineering. Springer, pp. 32–47, 2008.

[Ko15] Kocbek Bule, Mateja; Jost, Gregor; Hericko, Marjan; Polančič, Gregor: Business Process
Model and Notation: The Current State of Affairs. Computer Science and Information
Systems, 12(2):509–539, 2015.

[KR11] Künzle, Vera; Reichert, Manfred: PHILharmonicFlows: towards a framework for object-
aware process management. J of Soft Maint & Evo, 23(4):205–244, 2011.

[KRG07] Küster, Jochen M.; Ryndina, Ksenia; Gall, Harald: Generation of Business Process
Models for Object Life Cycle Compliance. In: Business Process Management. Springer,
2007.

[Me13] Meyer, Andreas; Pufahl, Luise; Fahland, Dirk; Weske, Mathias: Modeling and Enacting
Complex Data Dependencies in Business Processes. In: BPM, pp. 171–186. Springer,
2013.

[MW14] Meyer, Andreas; Weske, Mathias: Activity-centric and artifact-centric process model
roundtrip. In: Int’l Conf on BPM. Springer, pp. 167–181, 2014.

[Ou06] Ouyang, Chun; Dumas, Marlon; Breutel, Stephan; ter Hofstede, Arthur: Translating
Standard Process Models to BPEL. In: CAiSE 2006. Springer, pp. 417–432, 2006.

[Re12] Reichert, Manfred: Process and Data: Two Sides of the Same Coin? In: 20th Int’l Conf
on Cooperative Information Systems (CoopIS’12). Springer, pp. 2–19, 2012.

[SAR18a] Steinau, Sebastian; Andrews, Kevin; Reichert, Manfred: Modeling Process Interactions
with Coordination Processes. In: CoopIS’18. LNCS. Springer, pp. 21–39, 2018.

[SAR18b] Steinau, Sebastian; Andrews, Kevin; Reichert, Manfred: The Relational Process Structure.
In: CAiSE 2018. LNCS 10816. Springer, pp. 53–67, 2018.

[SAR19] Steinau, Sebastian; Andrews, Kevin; Reichert, Manfred: Executing Lifecycle Processes
in Object-Aware Process Management. In: SIMPDA. Springer, pp. 25–44, 2019.

98 Marius Breitmayer, Lisa Arnold, Marko Pejic, Manfred Reichert

[Si09] Silver, B: Case management: Addressing unique BPM requirements. Taming the
unpredictable: real-world adaptive case management, pp. 1–12, 2009.

[SMW07] Strommer, Michael; Murzek, Marion; Wimmer, Manuel: Applying Model Transforma-
tion By-Example on Business Process Modeling Languages. In: Advances in Conceptual
Modeling – Foundations and Applications. Springer Berlin Heidelberg, pp. 116–125,
2007.

[St19] Steinau, Sebastian; Marrella, Andrea; Andrews, Kevin; Leotta, Francesco; Mecella,
Massimo; Reichert, Manfred: DALEC: A Framework for the Systematic Evaluation of
Data-centric Approaches to Process Management Software. Softw & Sys Modeling,
18(4):2679–2716, 2019.

[vdA19] van der Aalst, Wil M. P.: Object-Centric Process Mining: Dealing with Divergence and
Convergence in Event Data. In: Software Engineering and Formal Methods. Springer,
Cham, pp. 3–25, 2019.

[vdAWG05] van der Aalst, Wil M. P.; Weske, Mathias; Grünbauer, Dolf: Case handling: a new
paradigm for business process support. DKE, 53(2):129–162, 2005.

[We19] Weske, Mathias: Business Process Management: Concepts, Languages, Architectures.
Springer, 2019.

