
UI-Tracer: A Lightweight Approach to Help Developers
Tracing User Interface Elements to Source Code

Regina Hebig1

Abstract: The ability to understand software systems is crucial to identify hidden threats or maintain
software systems over many years. Still software comprehension activities take up around 58% of
software development time. While most approaches support the comprehension of a software systemŠs
code perspective, its connection to the user perspective is barely explored. We present UI-Tracer, a
lightweight support for tracing user interface elements to source code using the version history of a
system. The evaluation on two open source systems shows that the approach can cover all UI elements
that have been changed or added within the accessible part of the version history. Furthermore, the
median numbers of Ąles Ćagged as potentially responsible for a UI element is 8 and 3 for the two
studied systems. Thus, UI-Tracer provides an easy starting ground for developers to identify Ąles
relevant for future UI changes.

Keywords: Software Comprehension; UI Tracing

1 Introduction

One of the key ideas behind open source systems is that they enable users and experts
to inspect the source code, making it more diicult to build in hidden threats. Despite
the openness it is, however, not trivial to read, comprehend or explain source code. Even
experienced software developers have to invest time if they want to understand a new system.
Also systems with long live-spans need to be understood over the years over and over again
by new developers and maintainers. While there are approaches that can be used to easier
understand a software system, until today, software comprehension activities take up around
58% of software developersŠ time [Xi17, Fj83, Ti11]. Also, developers who know a system
have little tool support, when explaining the source code to new developers.

Related Work Most existing works towards software comprehension can be split into
code-level and architecture level approaches. Thus, there are coding conventions, e.g.
OracleŠs Java Coding Conventions2, code annotations, as well as approaches for stepwise
execution/simulation, e.g. [DL00] and debugging, e.g. [ZL96]. Some approaches aim at
automatically recovering trace links in source code [An02]. Furthermore, there is the

1 Chalmers | University of Gothenburg Universität, Software Engineering Division, Hörsegången 11, 412 96
Göteborg, Sweden hebig@chalmers.se

2 OracleŠs Java Coding Conventionshttp://www.oracle.com/technetwork/java/index-135089.html

cbe

M. Tichy, E. Bodden, M. Kuhrmann, S. Wagner, J.-P. Steghöfer (Hrsg.): SE 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 225

https://creativecommons.org/licenses/by-nc/3.0/
hebig@chalmers.se
http://www.oracle.com/technetwork/java/index-135089.html
https://creativecommons.org/licenses/by-nc/3.0/


research area of code visualizations, that focuses on illustrating metrics about building
blocks, such as number of lines of code or complexity, as well as relations between these
building blocks. Examples are code cities [WL08] and circular bundle views [TBD12].
Other approaches aim at reverse engineering models from code [Ch08], generation of
documentations, e.g. with Doxygen3 and approaches to summarize software in natural
language [Bi13]. Nearly all of these techniques remain at representing the source code
perspective on the system. The resulting visualizations, simulations, models, documentation,
and explanations, reĆect the structure of the code and its terminology, such as class names.
However, it can be argued that each software system has another fundamental perspective:
the user perspective. So far there is no approach that provides a bridge between user and
source code perspective.

UI-Tracer Research has shown that professional developers who have to comprehend a
new piece of code try to connect knowledge about the user interface with knowledge about
the code [Ro12]. However, so far there is no approach that supports developers in making
these connections. On the other hand, it might take even experienced developers some efort
to reproduce and document these traces, when explaining source code to novices.

In this paper, we ask the following questions: How can an automated approach help users to
identify source code that has impact on a user interface element of interest? We present the
UI-Tracer, a lightweight approach that analyzes the UI of a system throughout its version
history, and identiĄes Ąles that were changed together with observed changes in the UI. This
way the UI-Tracer can provide developers who want to learn about the code connected to an
UI element, with a starting set of Ąles. While not necessarily all of the Ąles are relevant
for the UI element, the value lies in the limitation of choices, making it easier to Ąnd the
right Ąles. We evaluate the approach based on two open source systems with regards to the
questions a) whether all UI elements can be covered with the approach and b) how small,
i.e. precise, are the sets of identiĄed Ąles. The UI-Tracer approach is presented in Section
2. In Section 3, we evaluate the approach and discuss the results. Finally, in Section 4 we
conclude and discuss future work.

2 The UI-Tracer

The basic idea of the UI-Tracer4 approach is that the following two questions have the same
answers: ŞWhat code is responsible for a UI element?Ť and ŞWhat code causes changes of a
UI element when changed?Ť. Thus, when tracing UI elements to code, those classes are of
interest that can change a UI element. Furthermore, change happens during the development
of a system, where each element is at one point or another introduced.

Therefore, this approach uses the granularity of commit to a project for the tracing. Analyzing
how UI and source code change commit by commit. The three technical pillars of this

3 Doxygen http://www.stack.nl/~dimitri/doxygen/

4 The UI-Tracer prototype can be found here https://github.com/rhebig/UI-Tracer

226 Regina Hebig

http://www.stack.nl/~dimitri/doxygen/
https://github.com/rhebig/UI-Tracer


approach are: online open source repositories, e.g. GitHub, technologies for automatic
compilation, e.g. ANT, and user interface scripting languages and image comparison
techniques, such as Sikuli [YCM09]. In the following subsections it will be explained how
the UI-Tracer works and how it can be adapted to analyzing new systems.

2.1 Approach and Prototype

Figure 1 provides an overview of the approach, which consists of two halves. A class
diagram of the UI-Tracer can be seen in Figure 2.

GitHub

Get Next

Version

Compile

Version 

(ANT)

Run

Version

Run UI Skript & 

create Screenshot

(Sikuli)

Compare

Screenshots

Store

Diff

Get Code

Difference

between Commits

Screenshots

Diffs

Get Next

Pair of

Commits

For all pairs of

consecutive

Commits

For all Versions

Fig. 1: Overview about the approach

In the first half, the repository of the system to be analyzed is cloned and then commit by
commit reverted back to former versions (performed by the class CloneRemoteRepository

shown in Figure 2). For each commit/version, the UI-Tracer compiles the software to create
an executable, e.g. a jar (performed by the class Builder shown in Figure 2). This is done
at the moment for Java using Ant. However, since, the build process is the only step the
approach that is speciĄc to the programming language. In future, the prototype can be
extended at this point to allow for other technologies, such as Gradle or Maven, and with it
further programming languages, e.g. C++ or python.

After the executable is created, the UI-Tracer (class BuildAndScreenshotCoordinator shown
in Figure 2) uses a process builder to execute the compiled system. Once the system is
running the UI-Tracer executes some random mouse movement. This is done to make sure
that random UI efects, as they sometimes occur with just started systems, disappear. Then a
small standard routine is executed to enlarge the systems window to full screen. This is done
to ensure that the collected images are comparable. Afterward the Ąrst screen-shot is done.

In the next step a customized Sikuli script is executed. This script is typically created based
on the most current version of the system and can for example click and hover over all main
menu items to make sure that the sub-menu items are shown as well. During that execution
extra screen-shots are taken and stored. It turned out to be a crucial step to terminate
the running system after making all relevant screen-shots. Otherwise the machine will be

UI-Tracer 227



overloaded quickly and slow down dramatically. Therefore, the UI-Tracer kills the started
process before downloading a new version of the system from Github.

In the second half the class ComparingScreens (Figure 2) iterates over all pairs of
consecutive commits. Note that it is possible that single versions cannot be compiled. One
possible reason for that is that a commit in the repository introduced faulty or breaking code,
which was corrected in a later commit. To compensate for that two commits are considered
consecutive, if screen-shots could successfully be obtained for both commits and if there
are no commits in between them for which screen-shots could be applied.

For each pair, the initial screen-shots are subject to an automated image comparison.
Similarly, for each screen-shot made during the execution of the customized Sikuli script a
comparison between the two commits is performed. If a pair of screen-shots is marked as
diferent, by the automated comparison, the UI-Tracer will start to use GitHub to retrieve
the code diference between the involved commits (performed by class CodeDiffTracer

shown in Figure 2). In doing so, the UI-Tracer considers all changes of all commits that took
place in between the considered pair of commits (to cover for cases where some commits
could not be successfully compiled). Finally, the ids of those commits are stored together
with references to the two screen-shots and the list of Ąles in the repository that have been
modiĄed, added, or deleted in between the two commits.

Fig. 2: Class Diagram of the UI-Tracer

2.2 ConĄguring the Tool to Analyze a new Software System

At the moment the UI-Tracer uses a primitive conĄguration class to enable its application
to new systems. For a new system to be studied a new class can be created that inherits
from the class Configurations (as shown in Figure 2 for the two example systems AOI and
Notepad). Then the getInstance() method in class Configurations should be changed to
return the instance of the newly created class.

228 Regina Hebig



Plant Files for Build While some systems already provide an automated Ant script,
others do not. Therefore, it might be necessary to plant the Ant script and used libraries,
e.g. jar Ąles, into the system. Depending on the system, very old version might have slight
diferences that need to be addressed in the Ant script, e.g. a diferently named main class.
A typical implementation of the plantFilesForBuild(Integer buildCount) method is shown
in Listing 1. Here another Ant script is planted when the commit to be built is 80 commits
older than the current version (or more). The Ant script and relevant libraries are thereby
stored in a folder FilesToPlant of which all content is copied to the system to be compiled.

public void plantFilesForBuild(Integer buildCount) {

File srcDir;

if(buildCount<80)

srcDir = new File(basicpath + "FilesToPlant");

else

srcDir = new File(basicpath + "FilesToPlant_2");

File destDir = new File(projectPath);

try {

FileUtils.copyDirectory(srcDir, destDir);

}catch(Exception e) {System.out.println(e);}

}

List. 1: Typical implementation of plantFilesForBuild

Customized Sikuli Script The customized sikuli script can be added here. Listing 2
shows an example of such a script with a typical building block. The parameters screenRect,
commitNumber, and commitID are there to ensure that the screen-shot captures the relevant
region of the screen and that it is saved in association to the current commit. These
parameters are only used when the BuildAndScreenshotCoordinator is called to take a
screen-shot and can otherwise be ignored. When calling the latter a fourth parameter should
be used to deĄne a subcategory of screen-shots, so that the automated comparison can later
on compare the right screen-shot with each other. In the example, the subcategory is set to
DropDown by deĄning the folder ŞDropDown\\Ť as target for saving the screen-shot.

public void customizedSikuliScript(Rectangle screenRect, Integer

commitNumber, String commitID) {

Screen s = new Screen();

try {

s.click(imagesInputPath+"DropDown.png");

TimeUnit.SECONDS.sleep(1);

BuildAndScreenshotCoordinator.screenShot(screenRect,

commitNumber, commitID, "DropDown\\");

s.type(Key.ESC);

}catch(Exception e) {System.out.println(e);}

}

List. 2: Typical building block of the customized sikuli script

UI-Tracer 229



Tab. 1: Paths to be set

Variable
REMOTE_URL the url of the repository that contains the system that should be analyzed
basicpath a basis path to the working directory
projectPath (extension to basicpath) the path where the system will be cloned to
buildName the name of the build
imageSavePath (extension to basicpath) the path to the folder where screen-shots will be

stored
imagesInputPath (extension to basicpath) the path to the folder where images are stored

that are used in the customized sikuli script
antLocation (extension to projectpath) the path to the xml Ąle specifying the ant script
jarLocation (extension to projectpath) the path to the executable that will be created

when running Ant

Fig. 3: Image of the DropDown
to be clicked in listing 2

Another important aspect is that Sikuli allows users to deĄne
the target of a click or hover action by providing an image
of the region or button. By matching the image to the screen,
Sikuli is robust against factors, such as absolute positioning
of user interface elements. Figure 3 shows the image used in
the example. Other actions that are useful are sleeping actions
to give the program time to react to an action, e.g. after a click, and escape actions to go
back to the starting screen, e.g. by pressing the ESC key programmatically. This way the
script can also be used to navigate between multiple views of a UI.

Paths and URLs Finally, the constructor of the new subclass of Configurations should
set all relevant paths and URLs, as listed in Table 1.

2.3 Example Output and Envisioned Use

An example for the output can be seen in Figures 4 and 5. The Ągures show parts of
screen-shots that UI-Tracer made for the Art Of Illusion (AOI) software, compiled 77
commits before the current version and 78 commit before the current version. Note, that
screen-shots from the initial screen show that a new menu item was added in commit
77 that has not yet been there after commit 78: View. Furthermore, the Figure shows
the screen-shots done after clicking/hovering over the buttons Scene and View. Observe
that several sub-menu items from the menu item Scene in commit 78 are moved to the
new menu item View. UI-Tracer reports that only one Ąle was modiĄed in commit 77:
Şsrc/artoĄllusion/LayoutWindow.javaŤ. Thus, a user of UI-Tracer can conclude that the
deĄnition of menu items and sub-menu items is done in that Ąle.

The current version of the UI-Tracer can be used by developers who are interested in learning
about an open source systemŠs implementation, e.g. in order to make future contributions.
The images can be used as an entry point to identify what Ąles are responsible for certain
UI elements.

230 Regina Hebig



(a) AOI 78 commits before current version, initial
screen

(b) AOI 77 commits before current version, initial
screen

(c) AOI 78 commits before current version, click-
ing Scene menu

(d) AOI 77 commits before current version, click-
ing Scene menu

Fig. 4: Example of automatically detected diference, between screen-shots of AOI consecutive
commits 77 and 78 (i.e. 77 and 78 commits before the current version).

Fig. 5: Continuation of example of automatically
detected diference: AOI 77 commits before cur-
rent version, clicking View menu

Another possible use case is to apply the UI-
Tracer incrementally during development
that follows the continuous integration prin-
ciple. This could be done by hooking it into
the repository and automatically executing
it with every new commit. In both cases the
resulting images (e.g as in Figure 4), can
be integrated into the documentation of the
system, to give readers a quick and intu-
itive impression about what a class, such as
LayoutWindow, is responsible for.

3 Evaluation

We evaluate the two following questions:
(a) Does the approach cover all UI elements?
(b) How small, and with it useful, are the sets of identiĄed Ąles?
The following subsections describe the used case systems for the evaluations, the method
used for data collection, the results of the evaluation as well as a discussion of these results.

UI-Tracer 231



3.1 Used Systems

To evaluate the approach it was applied to two open source system: PHNotepad5, which is a
simple text editor written in Java, and Art of Illusion6, a program to create 3D models.

PHNotepad is a java project with 8 contributors. The fork7 that was analyzed was made
on the 11th of October 2017 and had 85 commits on GitHub. The oldest commit has been
submitted in May 2012 and included an initial small version of the system with 15 Ąles.
AOI is a java project as well and has 4 contributors. UI-Tracer was used to analyze a fork of
AOI8 made on the 12th of September 2017, when the project had 526 commits on github.
The project was developed already before it came to GitHub. Therefore, AOI had already
reached version 2.4.1 when it was initially committed to Github in March 2007. The last
stable release from December 2016 is version 3.0.3.

3.2 Method

UI-Tracer was conĄgured for each of the two systems and run over night. For AOI, no ant
and jar Ąles needed to be planted for the most recent 537 commits as the developers use Ant
themselves. However, for older commits 15 jars and an ant Ąle needed to be provided. Here
it was possible to reuse the ant Ąle that is used for the most recent versions. Furthermore,
the Ant Ąle needed to be changed slightly for commits older than the last 417 commits, as at
that commit the main class and method were renamed. The customized sikuli script was
written, so that all main menu items are clicked and the sub-menu items become visible in
the respective screen-shots

Also PHNotepad comes with an ant script. However, to ensure that the system compiles
properly, a new ant script was planted for each commit. Altogether, three diferent ant scripts
are planted, as in the early version of the system no image Ąles were used and the main class
was renamed at some point. Again, the customized sikuli script was written, so that all main
menu items are clicked to show the sub-menu items. Furthermore, the sikuli script clicks
through all the tool icons at the top row, to make eventual pup-up windows visible.

To make sure that the tool provided correct results, two manual checks were performed. The
Ąrst manual check made sure that the comparison of the screen-shots worked correctly, i.e.
that no diference was missed and no identical screen-shots were identiĄed as diferent. The
second manual check was performed to ensure that the tracing of code difs for a pair of
commits worked correctly.

To get a baseline of UI elements for which changes should be identify by the UI-Tracer, we
manually compared the initial commit of each system with its most current version. In this

5 PHNotepad https://github.com/pH-7/Simple-Java-Text-Editor.git

6 AOI https://github.com/ArtOfIllusion/ArtOfIllusion
7 PHNotepad fork used in evaluation https://github.com/rhebig/Simple-Java-Text-Editor

8 AOI fork used in the evaluation https://github.com/rhebig/ArtOfIllusion

232 Regina Hebig

https://github.com/pH-7/Simple-Java-Text-Editor.git
https://github.com/ArtOfIllusion/ArtOfIllusion
https://github.com/rhebig/Simple-Java-Text-Editor
https://github.com/rhebig/ArtOfIllusion


Tab. 2: General statistics about the evaluation runs.

AOI PHNotepad
Duration of analysis run 3h 15 min. 1h 25 min.
Number of commits in Repository 526 85
Number of commits with successful screen-shots 320 78
Number of commits without successful screen-shots 206 7

comparison we considered UI elements that changed or were added to the initial screens
of both tools, as well as changed/added UI elements that are visible when executing the
actions encoded in the customizable sikuli scripts, e.g. sub-menus and pop-up windows,
when clicking and hovering over menu items and buttons. For each of those UI elements,
we then searched the results of the UI-Tracer run to see whether the tool identiĄed at least
one UI change, e.g. appearance or change of position, for that UI element. For example, the
UI-changes observed in Figure 4 concern 10 UI-elements: the menu item ŞViewŤ, which
was added and the 9 sub-menu items that were moved from ŞSceneŤ to ŞViewŤ.

3.3 Results

The analysis of the 526 AOI commits took around 3 hours and 15 minutes, while the analysis
of PHNotepad, which has only 85 commits, was done within around 1 hour and 25 minutes.
Table 2 shows some general statistics about the analysis of both systems. For 320 of the
AOI commits is was possible to successfully derive screen-shots of the running system
(around 60% of the commits). For PHNotepad the amount was with 78 commits much
higher (around 91%).

(a) Does the approach cover all UI elements? As baseline, between the initial commit
and the current version, 36 UI elements of AOI changed and 32 UI elements of PHNotepad
changed. These changes include among other additions of top menu items, e.g. ŞViewŤ in
AOI, additions and renames of sub-menu items, additions and removal of buttons and icons,
rearrangements of information Ąelds within the UI, moving of sub-menu items amongst
top menu items and changing texts. For AOI the UI-Tracer identiĄed 18 pairs of commits
in between which the UI changed, including 51 UI changes that afected 39 diferent UI
elements. For PHNotepad is were 22 pairs of commits, including 77 UI changes that afected
33 diferent UI elements (see Table 3).

First of all, these identiĄed changes covered all of the 36 (AOI) + 32 (PHNotepad) UI
elements for which changes were expected. Note this success-rate does not sufer from
the fact that no screen-shots could be obtained for many of the commits. In theory, just
comparing the initial and current commit is suicient to get this coverage.

However, by comparing commits in between, the UI-Tracer identiĄed 3 (AOI) + 1 (PH-
Notepad) additional changes. These are changes that are not visible when only comparing
the Ąrst and last version of a program. The reason for that is that changes can cover each

UI-Tracer 233



Tab. 3: Comparison of User Interfaces

AOI PHNotepad
Number of commit pairs associated to identiĄed UI changes 18 22
Number of UI changes identiĄed by UI-Tracer 51 77
UI elements with identiĄed changes 39 33
UI elements expected to change (initial commit vs. current version) 36 32
Coverage of expected changes by identiĄed changes 100% 100%
UI elements with changes identiĄed in screen-shots of initial screens 16 14
Number of changes visible in screen-shots of initial screens 20 22
Number of redundant change reports (indication in multiple screen-shots) 121 181

other over time, e.g. such as the addition and later renaming of a UI element. Some changes
are even done and re-done after a while, leading to information about additional UI elements.

Finally, 20 (AOI) and 22 (PHNotepad) of the changes, afecting 16 and 14 UI elements,
could be identiĄed without the customized sikuli script. Furthermore, the tool often reported
multiple times on the same UI change, if the afected elements were visible on the initial
screen and the customized screen-shots. We got 121 (AOI) and 181 (PHNotepad) of such
redundantly reported changes.

(b) How small, and with it useful, are the sets of identiĄed Ąles? While it is not
necessary that all commits are successfully analyzed to get a high coverage of UI elements,
it inĆuences the precision of the set of identiĄed Ąles. The reason is that missing information
about commits in between two commits which show UI diferences creates an uncertainty
about which commit introduced the observed changes. Consequently, the Ąles changed in
those commits need to be integrated to the set of returned candidates.

0

20

40

60

80

100

120

AOI PHNotepad

Fig. 6: Files identiĄed by UI-Tracer per
found UI changes

As summarized in Table 4 AOI consists of around
713 Ąles (including code, image, and some Ąles)
and PHNotepad consists of 32 Ąles. For AOI, where
only 60% of the commits were covered, the average
number of Ąles identiĄed as relevant for an observed
UI change is 21 (around 2.9% of all AOI Ąles). Note
that there are three UI changes that belong to the
same pair of commits: 204 and 265 commits before
the current version. Due to this large gap between the
two successful commits, UI-Tracer had to associate
109 Ąles with these three changes. Without these
outliers, the average number of identiĄed Ąles for
AOI is 15.5. That the average is skewed by outliers
is also reĆected by the low median of 8 Ąles (1.1%
of all AOI Ąles). For PHNotepad, the number of Ąles
identiĄed as relevant for an observed UI change is with in average 3.96 Ąles (median 3)
quite low (around 12% of all PHNotepad Ąles). Figure 6 summarizes these results.

234 Regina Hebig



Tab. 4: Code Tracing per Observed UI Change

AOI PHNotepad
absolute number of Ąles in the system 713 32
per Observed UI Change:

median number of Ąles identiĄed by UI-Tracer 8 3
average number of Ąles identiĄed by UI-Tracer 21 (15.5 without outliers) 3.96
minimum number of Ąles identiĄed by UI-Tracer 1 1
maximum number of Ąles identiĄed by UI-Tracer 109 9
Number of UI Changes:

... identiĄed by UI-Tracer 51 77

... with > 2 Ąles identiĄed by UI-Tracer 39 48

... with > 10 Ąles identiĄed by UI-Tracer 23 0

The minimum number of Ąles identiĄed for a UI change is in both cases 1, the maximum
numbers are 109 (AOI) and 9 (PHNotepad). Of the 51 identiĄed UI changes in AOI, 12
were associated to 2 or less Ąles and 28 to 10 or less Ąles. Of the 77 PHNotepad UI changes,
29 were associate with 2 or less Ąles and none was associated with more than 10 Ąles.

3.4 Discussion

The results show that it is possible to cover all changes in UI elements that happen within the
observed period of time. For those UI elements that are introduced or changed, the approach
will associate relevant source code Ąles. Many systems, however, are not open source from
the very beginning, such as AOI. Thus, the approach can only cover all elements of the user
interface, when applied by someone who has access to the full version history.

Furthermore, the precision of the identiĄed Ąles is dependent on the number of commits
that can successfully be compiled and the number of Ąles committed per commit. Both
aspects are highly dependent on the project culture.

However, bringing the number of candidate Ąles to look at down to median 3 to 8 Ąles,
especially in large systems, such as AOI, is already very useful for users who want to identify
responsible parts of the source code. Despite the current limitations the results can be
considered as very promising, as they open the path towards a completely new approach of
software documentation and comprehension support. The UI-Tracer shows that it is possible
to automatically trace UI elements to source code in a lightweight and simple way. This will
allow novices to approach new systems by directly connecting the code to the user interface.

4 Conclusion and Future Work

The paper introduced a lightweight approach to support software comprehension, by helping
users to trace changes in user interfaces to Ąles in the code base. The evaluation on the two
open source systems Art of Illusion and PHNotepad showed that the approach can cover

UI-Tracer 235



all UI elements that have been changed or added within the accessible part of the version
history. With median 3 to 8 Ąles we think that the approach can be a useful support for users
who aim at changing or extending a for them unknown system. Furthermore, we think that
the UI-Tracer is an important Ąrst step towards integrating the user interface perspective
with approaches for comprehending source code.

In future work, we aim at further exploring the potentials of the UI-Tracer. The presented
approach is in theory independent of the programming language of the system to be analyzed.
In future work we plan to adapt UI-Tracer to work with additional build systems, e.g. gradle
or Maven, and apply it to systems with diferent languages. Furthermore, our next step is
to explore whether we can achieve a better precision, by automatically planting changes
into the source code of a system and observing the changes to the user interface. Another
direction for future work is the use of data. For example, AOI is a graphics tool. It will be
interesting to see what happens if the customized Sikuli script would not just press buttons
but actually use the tool to create graphics.

References
[An02] Antoniol, Giuliano; Canfora, Gerardo; Casazza, Gerardo; De Lucia, Andrea; Merlo, Ettore:

Recovering traceability links between code and documentation. IEEE transactions on
software engineering, 28(10):970Ű983, 2002.

[Bi13] Binkley, Dave; Lawrie, Dawn; Hill, Emily; Burge, Janet; Harris, Ian; Hebig, Regina;
Keszocze, Oliver; Reed, Karl; Slankas, John: Task-driven software summarization. In:
Software Maintenance (ICSM), 2013. IEEE, pp. 432Ű435, 2013.

[Ch08] Chouambe, Landry; Klatt, Benjamin; Krogmann, Klaus: Reverse engineering software-
models of component-based systems. In: Software Maintenance and Reengineering, 2008.
CSMR 2008. IEEE, pp. 93Ű102, 2008.

[DL00] Drappa, Anke; Ludewig, Jochen: Simulation in software engineering training. In: Software
Engineering, 2000. IEEE, pp. 199Ű208, 2000.

[Fj83] Fjeldstad, Richard K: Application program maintenance study: Report to our respondents.
Proceedings GUIDE 48, 1983, 1983.

[Ro12] Roehm, Tobias; Tiarks, Rebecca; Koschke, Rainer; Maalej, Walid: How do professional
developers comprehend software? In: Proceedings of the 34th International Conference on
Software Engineering. IEEE Press, pp. 255Ű265, 2012.

[TBD12] Trümper, Jonas; Beck, Martin; Döllner, Jürgen: A visual analysis approach to support
perfective software maintenance. In: Information Visualisation (IV), 2012. IEEE, pp.
308Ű315, 2012.

[Ti11] Tiarks, Rebecca: What maintenance programmers really do: An observational study. In:
Proceedings of the Workshop Software Reengineering (WSR). pp. 36Ű37, 2011.

[WL08] Wettel, Richard; Lanza, Michele: Codecity: 3d visualization of large-scale software. In:
Companion of the 30th international conference on Software engineering. ACM, pp.
921Ű922, 2008.

[Xi17] Xia, Xin; Bao, Lingfeng; Lo, David; Xing, Zhenchang; Hassan, Ahmed E; Li, Shanping:
Measuring Program Comprehension: A Large-Scale Field Study with Professionals. IEEE
Transactions on Software Engineering, 2017.

[YCM09] Yeh, Tom; Chang, Tsung-Hsiang; Miller, Robert C: Sikuli: using GUI screenshots for
search and automation. In: Proceedings of the 22nd annual ACM symposium on User
interface software and technology. ACM, pp. 183Ű192, 2009.

[ZL96] Zeller, Andreas; Lütkehaus, Dorothea: DDD - a free graphical front-end for UNIX
debuggers. ACM Sigplan Notices, 31(1):22Ű27, 1996.

236 Regina Hebig


