K.-U. Sattler et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2021 313

Combining Programming-by-Example with Transformation
Discovery from large Databases

Aslihan Ozmen! Mahdi Esmailoghli,2 Ziawasch Abedjan3

Abstract: Data transformation discovery is one of the most tedious tasks in data preparation. In
particular, the generation of transformation programs for semantic transformations is tricky because
additional sources for look-up operations are necessary. Current systems for semantic transformation
discovery face two major problems: either they follow a program synthesis approach that only scales
to a small set of input tables, or they rely on extraction of transformation functions from large corpora,
which requires the identification of exact transformations in those resources and is prone to noisy data.
In this paper, we try to combine approaches to benefit from large corpora and the sophistication of
program synthesis. To do so, we devise a retrieval and pruning strategy ensemble that extracts the
most relevant tables for a given transformation task. The extracted resources can then be processed by
a program synthesis engine to generate more accurate transformation results than state-of-the-art.

1 Introduction

In the era of big data, various large datasets are generated from different sources and stored
in various forms. Integration and preparation of raw data from diverse sources with different
schema is an important step in every data-driven analysis tasks. The preparation steps
include cleaning tasks, such as normalization, entity resolution, and data transformation. In
this paper, we address the vital task of data transformation discovery, which refers to the
task of generating a transformation function that systematically converts values of columns
from one representation to another [Ab15; Ab16; GHS12; Jil7; Mo15; Ro17; Sil6].

A data transformation task might be either syntactic or semantic. Syntactic transformation
tasks require syntactic manipulations on the input value via a program based on a formula
or, a regular expression. A typical example is a date conversion from "XX-XX-XXXX"to
"XX/XX/XXXX". Unlike the syntactic manipulation, semantic transformation cannot be
performed with a formula or program and the input value only. Semantic transformations
requires more context to identify an implicit relationship between the input and output
values. For example, there is no formula that can calculate the airport code for a given
city name. Practically one needs a lookup operation on external resources. Transformation
discovery is hence a tedious task that requires domain knowledge, programming expertise,
and access to external datasets. Therefore, research tried to come up with approaches to
facilitate this process.

I'tu Berlin, aslihan.ozmen @ thoughtworks.com
2 Leibniz Universitit Hannover, esmailoghli @dbs.uni-hannover.de
3 Leibniz Universitit Hannover abedjan @dbs.uni-hannover.de

E©®O® doi:10.18420/btw2021-16

https://creativecommons.org/licenses/by-sa/4.0/
mailto:aslihan.ozmen@thoughtworks.com
mailto:esmailoghli@dbs.uni-hannover.de
mailto:abedjan@dbs.uni-hannover.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-16

314 Aslihan Ozmen, Mahdi Esmailoghli, Ziawasch Abedjan

There are two general directions of research for data transformation discovery. One line of
research is focused on programming-by-example (PBE) approaches that learn a program to
syntactically manipulate an input value and search for semantic relationships in additionally
provided support tables [GHS12; Jil7; Ro17; Sil6]. While PBE is highly innovative and
effective on spreadsheet scale, it is bound to a small set of given and related look-up tables
and cannot serve newly incoming transformation tasks. A different approach is taken by
the DataXFormer system [Abl16; Mol5] and TransformDatabyExample (TDE) [Hel8],
where transformations are to be retrieved from large repositories of tables or functions. Here
the given examples are used to swift through large repositories to find potential tables or
functions that implement the desired hidden transformation relationship. These approaches
have currently the limitation that they rely on the existence of at least one resource that fully
implements the whole relationship. Consider the example depicted in Table 1. The user
wants to map addresses such as “13701 Riverside Drive Pittsburgh” to the corresponding
state abbreviation “PA” and at this end, the user provides a set of examples as depicted in
table (a). Related tables in general purpose repositories are however unlikely to contain a
resource that explicitly shows this relationship. More likely a table lists mappings of more
general concepts, such as city to state as depicted in table (b). DataXFormer and TDE would
both not be able to use this related table because they follow a very coarse-granular look-up
approach that checks the exact match of input and output examples. Due to the large amount
of candidate tables, trying to search for all possible substrings of input and output examples
will hurt the performance of the transformation discovery significantly. Furthermore, it
might lead to extraction of many irrelevant tables.

In this paper, we tackle exactly this problem. We want to merge the benefits of transfor-
mation discovery from large repositories and the PBE approach to harvest more accurate
transformation functions. Since applying PBE on a large corpus of data is infeasible, we
need to define pruning techniques that effectively limit the set of relevant tables. This
problem is hard, as we do not know upfront which substrings inside the values of a table
might be relevant for a transformation task at hand.

Tab. 1: Nested Syntactic transformation with lookup operation

(a) Example pair and input values (b) Related table
Input | Output Town | State | County
13701 Riverside Drive Pittsburgh PA Pittsburgh PA Allegheny
27700 Medical Center Road Scarborough ? Claremore OK Rogers
4270 North Blackstone Avenue Tucson ? Scarborough ME Cumberland
Tucson AZ Pima
Indianapolis IN Marion

To this end, we propose ProTEUS that extends the DataXFormer system [Ab15; Abl16;
Mol15] to be able to detect more complex transformations. PRoTEUSs is able to detect
transformations that do not explicitly appear in the given data source. We achieve this by
relaxing the exact matching approach of the DataXFormer system. We propose a multi-step
filtering strategy that successively prunes irrelevant tables and cells before program synthesis

Combining Programming-by-Example with Transformation Discovery from large
Databases 315

is applied. Finally, we enable parallel processing of the PBE-component to increase the
scalability of our proposed system. In summary, our contributions in this paper are:

e We enhance the data transformation tool DataXFormer [Ab15; Ab16; Mo15] with
the PBE framework. Therefore, our proposed system is able to detect semantically
and syntactically more complex transformations.

e To make PBE feasible on millions of tables, we propose a set of pruning rules for
filtering and reducing the search space to use only web tables and table entries that
are relevant for the transformation task.

e By considering transformation steps per example-pair independently, we are able to
process the PBE-based transformation detection task in parallel, so we are able to
process the same task in the scale of millions of web tables.

2 Related Work

Several lines of research attempt to solve the task of the data transformation discovery.
DataXFormer [Ab15; Ab16; Mol5] serves as the foundation of our approach. It leverages
different resource types, such as Web tables [LB17; Yal2], Web forms, knowledge bases,
and expert sourcing, for example-based transformation discovery. For this purpose, they
proposed an inverted index for fast retrieval of relevant tables and a web form wrapper
generator. The main limitation of DataXFormer is that it cannot support transformations
that do not exactly match individual resource entries, i.e., tuple values of a web table.

Another line of research concerns the discovery of transformations from smaller data
structures [GHS12; Ji17; SG12; Sil6]. These approaches are referred to as programming-
by-example (PBE) techniques, which synthesize transformation programs using input
and output examples and a set of transformation operators on a small domain of data.
Consequently, in case of bigger scale use cases such as web tables, they lead to real-time
performance issues. In this paper, we try to combine the benefit of both lines of research. Our
approach improves on DataXFormer by synthesizing transformation functions require the
combination of multiple tables, by separating the retrieval process from the transformation
generation process. We solve the scalability issue of PBE by defining effective pruning rules
and filtering strategies.

Other than the scalability problem, systems such as REFAZER [Ro17] suffer from general-
izability problem. REFAZER only uses specialized Domain Specific Language to generate
codes for syntactic transformations. This system is only able to transform repetitive code
transformations by learning the observations but it is not general enough to apply the
transformations on pure text with unpredictable domain. Similar to Foofah, REFAZER does
not apply semantic transformations at all.

Finally, there is a line of research on interactive transformation script generation [HHK15;
Ji19; Kall]. The main focus of this line of research is on interactive transformation

316 Aslihan Ozmen, Mahdi Esmailoghli, Ziawasch Abedjan

generation and user-support during the transformation task, which is complementary to the
focus of transformation discovery for semantic transformations.

3 System Overview

Table Extractor Transformer Indexed Virtual
n rrrrrrrrrrrrrrrrrrrrr a A ﬁ Tables
,,,,,,,,,,,,,,,,,,, ' 4 s ey
Examples E
: = Graph Generator
!Input Values X
—O

f ¢ i Lookup Transformer 2 String Generator
" || Table Analyzer | y I Asks for
| (Advanced Table |: feedback

Response @

Filtered Tables

Fig. 1: System overview of PROTEUS

Figure 1 shows the overall ProTEUSs architecture. PROTEUS receives a set of values
X = {x;|]1 < i < n} that are desired to be transformed and a set of example pairs
E ={(x;,y;)|x; € X,1 <i < m} as inputs. In the end, the system outputs the discovered
transformation results Y for the remaining input values X as {(x;,y;)/, where y; is the
detected transformation of x;. PROTEUS consists of two main components: Web Table
Extractor and Transformer. Web Table Extractor is responsible for detecting the most related
web tables from the table corpus and the Transformer component detects and generates the
transformations for values in X.

In the first step, we dynamically generate queries to extract candidate tables from the corpus.
The tables are indexed via an inverted index as proposed in prior work [Ab16]. The index
maps tokens to tables and vice versa. Unlike DataXFormer, we do not only extract tables with
exact matches but relax the extraction query to accommodate more resources and postpone
the refinement to the PBE engine in Transformer. Because of the relaxation technique,
many of the tables might be irrelevant for the transformation task at hand. Therefore, in
the second step, we filter candidate tables that are unlikely to support the transformation
task. In the third step, we send the relevant candidate tables to the Transformer component.
Transformer first applies finer-granular pruning rules and scoring functions to remove
potential noisy, irrelevant, and duplicate records from the extracted tables. For this purpose
it uses a row-level filtering approach to detect the most relevant entries inside each selected
external table. In the fourth step, we leverage the PBE framework to generate syntactic
manipulation programs for the relevant tables. The programs can be represented as graphs
of operations that connect input values to the output values of the provided examples in E.
The common path between all these graphs is the answer for the transformation task.

The graph generation for each example pair can be performed in parallel, which allows us
to scale the process for more extracted tables. If there is not a common path, the user can

Combining Programming-by-Example with Transformation Discovery from large
Databases 317

choose the right graph among two disjoint graphs. In the end, PRoTEUS applies the final
chosen graph as the desired program to generate the output for the remaining input values.

4 Web Table Extractor

The Web Table Extractor takes example pairs (E) and returns transformation-related web
tables. It consists of the two sub-components: Table Query Transformer and Table Analyzer.

The Table Query Transformer is implemented as an extension of the query generator of
DataXFormer. The original DataXFormer query generator creates a single SQL query with
two IN operators, one for the input values and one for the output values to identify tables
that contain at least T example pairs. To obtain more data, we relax this query twofold. First,
ProTEUS tokenizes every input and output value from the example pairs and uses each
generated token independently for table retrieval. For instance, if the given example-pair is
“13701 Riverside Drive Pittsburgh — PA”, it generates queries to find tables that contain at
least one token from the input (here: “13701”,“Riverside”,”Drive”, “Pittsburgh”) and one
token from the output (here: “PA”). If no table is found, the system generates a new query to
find tables that contain any of the tokens as a substring of at least one entry. This is done
leveraging the LIKE predicate in SQL. The first query often returns a large number of web
tables, in which case we drop the time consuming query with the LIKE predicate.

A straightforward approach to detect the desired transformation would be to evaluate every
single retrieved table from the Table Query Transformer sub-component. This approach is
time-consuming and error-prone because of the large number of irrelevant tables. Therefore,
Table Analyzer further reduces the search space by filtering the irrelevant tables. First,
it determines whether at least the row alignment for input/output pairs in each table is
correct [Ab16]. Input and output pairs in each example should appear in the same rows.
While DataXFormer checks the row alignment for exact input/output values, we check
the row alignment of partial tokens and substrings of the input/output values. Note that
this alignment is necessary for the program generation later in order to obtain consistent
program paths that connect the input value to the output value. Furthermore, we also want
to get rid of tables where the tokens are randomly aligned. Especially in long column values
the occurrence of multiple tokens is likely. Thus we also drop tables where the Jaccard
similarity of the aligned rows and the corresponding original input examples is below 50%.

The remaining selected tables that pass the alignment test, will be rated based on their
relatedness to the transformation task. Depending on the number of matches and the strength
of the matches, tables differ in the degree of relatedness to the transformation task. Similar to
DataXFormer, PROTEUS leverages a refine technique based on expectation - maximization
(EM) to update the scores of tables and found alignments. However, our approach differs in
two ways. First, we also accommodate the fact that not every token is equally important
and further, we are only interested in obtaining the scores while DataXFormer uses the
final scores to choose the transformation. In the expectation step the scores of the tables are

318 Aslihan Ozmen, Mahdi Esmailoghli, Ziawasch Abedjan

updated and in the maximization step the scores of the instances. In each step the scores of
the other step is used to update the scores. This process converges as soon as the the updates
are below a very low threshold €. The process starts with scores that reflect the ratio of
existing example pairs inside the extracted tables. However, as we are considering partial
values, i.e., tokens, we also consider the fact that not every token is equally important. For
instance, if there is a match for value “of” in table 77 and another match for value “New
York City” in table 7. It is desirable to give more weight to the table that contains “New
York City” because it is more specific and thus more likely to support our specific task.
To reflect this property in the EM formula, we use the Inverse Document Frequency(IDF).
Higher IDF score means that the token is more specific. Therefore in the EM model, we
multiply the score of each occurring example with its IDF. Finally, Table Analyzer sends
the tables along their calculated scores to the Transformer component.

5 Transformer

The Transformer component has two sub-components: String Analyzer and Graph Generator.

String Analyzer takes the tables from the Web Table Extractor sorted by their relatedness
scores and finds the most relevant table entries (rows) for each input value. Each input value
can be matched with more than one entry inside a table. Therefore, String Analyzer reduces
them to the most promising match to unburden the PBE step from generating programs for
the matches that are less likely to be a candidate for the transformation.

To find the most related entry to the input value of an example pair, we leverage a score
based on the Longest Common Substring (LCS) [AO11]. This is consistent with most
PBE algorithms, which use common string patterns between two strings to detect the
transformations. We calculate the LCS score between each input value from the example
pairs and all the matched entries in the related tables. The table entry with the maximum
LCS score is selected to be used in the program generation phase. If there are two table
entries with the same LCS score, the edit distance, a.k.a. Levenshtein distance [Le66] will
break the tie. The entry with lower edit distance will be picked as more related.

Consider the example in Table 2. The first two example pairs in the left table are provided
by the user who wants to transform the address of the last two inputs to their corresponding
state codes. The table on the right reflects a candidate web table, which contains aligned
input/output tokens of our examples (the result of the steps before). In this candidate table,
the first row and the value “Redmond” has the highest LCS with the given input example
“1906 Jackson Way Redmond”. The same way, we compute the LCS for the second example
pair. In this particular case, there are two entries with the same LCS, the third and the fifth
rows contain both entries with the LCS length of 8. Here, the similarity check would be the
tie breaker, which chooses the entry in the third row. The String Analyzer outputs the top
related tables and the injective mapping of example pairs to rows in each table.

Combining Programming-by-Example with Transformation Discovery from large
Databases 319

Tab. 2: Simple LCS and similarity check example in Transformer

(a) Input values (X) including the example pairs (E) (b) Related web table
Input Output C1 C2
1906 Jackson Way Redmond WA Redmond WA, Washington
1703 Red Creek Road Richmond VA Redm. branch is
101 Sundown Blvd Sacramento ? open till 24/02 WA, Washington
510 Green Lake Road Beaumont ? Richmond VA, Virginia
Beaumont TX, Texas
Richmond branch is
open only till 03/03 VA, Virginia
Sacramento CA, California

Graph Generator discovers the programs that convert an input value to a provided output
transformation following the PBE approach [GHS12]. This sub-component receives the final
set of tables, top related entries, and the corresponding example pairs and then generates
the corresponding Directed Acyclic Graph (DAG) for each example pair. In this graph
each node represents a transformation state of a value and each edge corresponds to a
program that changed the value of its source node to the value in the target node. The
PBE approach combines programs for syntactic manipulations, which are concatenations
of regular expressions based on sub-strings and table mappings. For instance, a syntactic
manipulation would be a program that converts “Bob.Franklin@tu-berlin.de” to “Bob
Franklin” by learning to remove the substring after “@” and replace the first dot symbol by
a space. Depending on the provided resources, several possible paths can be generated to
map an input example to its output value.

Considering our running example, the graph for the first example pair shown in Figure 2 is
generated using the first row in the web table, because based on the LCS score, the first row
in the web table is the closest to the example pair. Edges with the labels of Prog; represent the
generated code snippets and 7; represents the value in the j node. Here, Prog; represents
the program to extract the first alphabetic string after the last space from the input value. The
next program encodes the mapping from “Redmond” to “WA, Washington”. And finally,
Prog; extracts the first alpha-numerical substring from “WA, Washington”.

Prog,= (SubStr(ni),AIphaToken,Last(“ ")

Camrs

",

Prog =T (C,R)->T (C,R)

Prog,=(Substr(val(n,),AlphaNum,1))
«

1906
Jackson Way
Redmond

Fig. 2: Generated graph for the first example pair in Transformer

Graph Generator greedily starts with the examples inside the table with the highest
relatedness score and starts to generate program graphs for them. Whenever it generates the

320 Aslihan Ozmen, Mahdi Esmailoghli, Ziawasch Abedjan

graphs of the next example pair it starts to find the intersection of the two sets of graphs and
this way gradually identifies the graph that covers all example pairs.

In the end, the intersection of all paths will be the program that can be used to transform the
remaining inputs. Once all the input values are transformed, all tables have been processed,
or the result of graph intersection is empty, the algorithm stops. The latter suggests that no
transformation could be found that covers all example pairs but there are still other tables
that might contain a fitting graph path. In such cases, PROTEUS can return possible graph
candidates and ask the user to choose the correct one. PRoTEUS can then proceed with the
chosen graph to find a match for remaining input values in the remaining tables. Figure 3
shows the application of graph intersection on our running example.
Beaumont

Beaumont
n, 4

Prog, = (SubStr{val(n)),AlphaToken,Last(“ ")) Prog,= Ti(C‘L’RA) ->T, (Cz, Ra) Prog3=(Su bstr{val(ns)),AlphaNum,1))

510 Green
Lake Road

Fig. 3: Path after the result of the final intersection

We generate the graphs independently from each other so that we are able to run each
graph generation and graph intersection in parallel. For instance, while we simultaneously
generate graphs for first and second example pairs, once we start intersecting them, we
generate the third example pair at the same time and so on. Defining the transformation
tasks as sub-independent processes enables us to perform transformations in parallel.

6 Evaluation

In this section, we show the efficiency and effectiveness of our transformation discovery
system and compare it to the state-of-the-art.

6.1 Data and experimental setup

We use the Dresden Web Table Corpus* [Eb15] as the table corpus to extract transformation-
related tables. It contains 145 million web tables from about 4 billion web pages. We evaluate
our approach by running 20 semantic data transformation tasks. Each transformation task
has 3 unique example pairs. Four of these transformation tasks (first two rows in Table 3) are
created manually to ensure that these tasks require syntactic manipulations before and after
lookup operations e.g., “Country is Ukraine — City name: Kiev”. The rest of the tasks are
public benchmarks found in Bing Search Engine query logs and asked by Data Scientists
and BI Analysts in StackOverflow. Table 3 shows all the transformation tasks used in this
paper. We compare our system to four state-of-the-art approaches: DataXFormer [Ab15;

4https://wwwdb.inf.tu-dresden.de/misc/dwtc/

https://wwwdb.inf.tu-dresden.de/misc/dwtc/

Combining Programming-by-Example with Transformation Discovery from large

Databases 321

Tab. 3: Transformation tasks used in this paper

Input Output Input ‘ Output
Country Names Capitals Country Names with Attributes Capitals
Element names Boiling point Country names Denonyms
Color Number Color code Regular time Military Time

Hijri Gregorian Caleandar Company Address State
MB GB yyyymmdd Datetime
Number Numeric Padding String Camelize Casing
Regular Format ISBN Format Datetime Month
Cookies Domain name Month number Month name
CUSIP Ticker Product Company
MEME Filename Time span hrs mins secs

Ab16; Mo15], Gulwani’s approach [GHS12], FlashFill [Gu16], and Foofah [Ji17]. We ran
our experiments on a machine with 2.9 GHz Intel Dual Core CPU and 8 GB RAM. Codes
are available in our GitHub repository>.

6.2 Results Tab. 4: Coverage, Precision, and Recall for 20 tasks.

C We defi b Systems | #Coverage | Precision | Recall
rage. We define coverage as the
9ve age g . PROTEUS 95% (19/20) 90% 78%
ratio of the number of transformation FlashFill 50% (10/20) 50% 50%
tasks where the system returns a cor- Gulwani 50% (10/20) 50% 50%
. DataXFormer 30% (6/20) 24% 17%
rect transformation output for at least Foofah 5% (1730) = =

one of the input values. As depicted
in Table 4, ProTEUS achieves considerably higher coverage than the other baselines. It
achieves 95% coverage, which means that our system generates output for 19 out of the 20
transformation tasks. High coverage conveys the fact that PRoTEUS is more robust to the
noisy data which is common in web tables. Noisy and erroneous data results in lower exact
match rate and in the end, it will lead to less related tables and lower coverage rate. Foofah,
due to the lack of ability in Regex matching, DataXFormer because of only using exact
match, Flashfill because of the lack of lookup operation and being limited to only program
generation, and Gulwani’s system due to the fact that it requires clean and user-defined
tables for the transformation tasks, have low coverage. The only task that was not covered
by ProTEUSs was “hijri to the gregorian calendar”. This conversion is difficult based on
static web tables. Consider the following input/output example pair given by the user:

“11 Shawwal 1430” — “Wednesday 30 September 2009 C.E”

ProTEUS cannot find web tables that contain the values “// — 30” and “1430 — 2009 .

Effectiveness. As shown in Table 4, PrRoTEUS outperforms other systems in terms of
Precision and recall. Leveraging token-based matching that retrieves wider range of
candidate tables from the corpus improves the recall. More candidate tables increase the

Shttps://github.com/aslihanozmen/Proteus

https://github.com/aslihanozmen/Proteus

322 Aslihan Ozmen, Mahdi Esmailoghli, Ziawasch Abedjan

chance to find the desired transformation. On the other hand, the LCS-based entry filtering
strategy allows the system to pick the most fitting table entries to the input values and drop
the irrelevant ones. Therefore, the final transformations are only generated using the most
promising candidates improving the precision. Gulwani’s approach because of being limited
to the provided tables, and FlashFill and Foofah because of their limitation to syntactic
transformations achieve lower precision and recall.

Runtime. As shown in Figure 4, PRoTEUS is faster and more scalable than DataXFormer
and Gulwani’s approach. We excluded FlashFill and Foofah from the runtime evaluation
because they only cover syntactic manipulations based on the input values. PROTEUS is
fast due to its pruning rules, and parallelization of the graph processing. It is also faster
than DataXFormer because before any look up operations, PRoTEUS checks whether
syntactic manipulations of the input values alone can perform the transformation for all the
input values. In these five cases it refrained from looking for more complicated semantic
transformations. These five tasks are “MB — GB”, “Cookies — Domain name”, “Regular
format — ISBN format”, “Number — Numeric padding”, and “String — Camelize casing”.
String Analyzer. Our LCS-based entry scoring tech- 5,118

nique that only keeps the top related entry, reduces
the number of generated Progs more than 50 times
compared to the raw PBE approach. This reduction
is due to the elimination of the irrelevant table entries
before the program generation phase. As an example,
for the transformation task “CUSIP” — “Ticker”,
without using our LCS-based pruning, the first two
generated graphs for the first two examples contain
overall 44, 075 Progs (edges). Intersecting these two
graphs leads to a graph with 9, 276 Progs. Applying
the LCS pruning, the total number of Progs for the first two generated graphs decreases to
750 and their intersection to 8 Progs.

30r

53
(=]
T

—_
(=4
T

Runtime (sec)

PROTEUS DataXFormer Gulwani

Fig. 4: Runtime comparison

7 Conclusion

In this paper, we proposed a system to combine transformation discovery with programming
by example. The general idea was to first relax the transformation discovery systems to
obtain more partially relevant resources and then filter irrelevant resources with PBE. Our
experiments show that the approach is covering more transformation tasks than state-of-the-
art. Unlike the state-of-the-art, PRoTEUS has higher robustness to noisy data that is very
common in web tables. In future, we would like to make the filtering steps more dynamic to
avoid heuristic-based thresholds.

Acknowledgements. This project has been supported by the German Research Foundation
(DFG) under grant agreement 387872445.

Combining Programming-by-Example with Transformation Discovery from large

Databases 323

References

[Ab15]

[Ab16]

[AO11]

[Eb15]

[GHS12]

[Gul6]

[Hel8]

[HHK 5]

[Jil7]

[Ji19]

[Kall]

[LB17]

Abedjan, Z.; Morcos, J.; Gubanov, M. N.; Ilyas, I. F.; Stonebraker, M.; Papotti, P.;
Ouzzani, M.: Dataxformer: Leveraging the Web for Semantic Transformations.
In: CIDR. 2015.

Abedjan, Z.; Morcos, J.; Ilyas, I. F.; Ouzzani, M.; Papotti, P.; Stonebraker, M.:
DataXFormer: A robust transformation discovery system. In: ICDE. Pp. 1134—
1145, 2016, urL: https://doi.org/10.1109/ICDE.2016.7498319.

Arnold, M.; Ohlebusch, E.: Linear Time Algorithms for Generalizations of the
Longest Common Substring Problem. Algorithmica 60/4, pp. 806818, 2011,
URL: https://doi.org/10.1007/s00453-009-9369-1.

Eberius, J.; Braunschweig, K.; Hentsch, M.; Thiele, M.; Ahmadov, A.;
Lehner, W.: Building the Dresden Web Table Corpus: A Classification Ap-
proach. In: BDC, 2015. IEEE Computer Society, pp. 41-50, 2015, uRrL:
https://doi.org/10.1109/BDC.2015. 30.

Gulwani, S.; Harris, W.R.; Singh, R.: Spreadsheet data manipulation using
examples. Commun. ACM 55/8, pp. 97-105, 2012, urL: https://doi.org/
10.1145/2240236.2240260.

Gulwani, S.: Programming by Examples: Applications, Algorithms, and Ambi-
guity Resolution. In: Proceedings of the 8th International Joint Conference on Au-
tomated Reasoning - Volume 9706. Springer-Verlag, Berlin, Heidelberg, pp. 9—
14, 2016, 1sBN: 978-3-319-40228-4, uRL: https://doi.org/10.1007/978-3-
319-40229-1_2, visited on: 03/10/2019.

He, Y.; Chu, X.; Ganjam, K.; Zheng, Y.; Narasayya, V.R.; Chaudhuri, S.:
Transform-Data-by-Example (TDE): An Extensible Search Engine for Data
Transformations. Proc. VLDB Endow. 11/10, pp. 11651177, 2018, URL:
http://www.vldb.org/pvldb/volll/p1165-he.pdf.

Heer, J.; Hellerstein, J. M.; Kandel, S.: Predictive Interaction for Data Transfor-
mation. In: CIDR. 2015, urL: http://cidrdb.org/cidr2015/Papers/CIDR15%
5C_Paper27.pdf.

Jin, Z.; Anderson, M. R.; Cafarella, M. J.; Jagadish, H. V.: Foofah: Transforming
Data By Example. In: SIGMOD. ACM, pp. 683-698, 2017, URL: https:
//doi.org/10.1145/3035918.3064034.

Jin, Z.; Cafarella, M. J.; Jagadish, H. V.; Kandel, S.; Minar, M.; Hellerstein, J. M.:
CLX: Towards verifiable PBE data transformation. In: EDBT. Pp. 265-276,
2019.

Kandel, S.; Paepcke, A.; Hellerstein, J. M.; Heer, J.: Wrangler: interactive visual
specification of data transformation scripts. In: CHI. Pp. 3363-3372, 2011.

Lehmberg, O.; Bizer, C.: Stitching Web Tables for Improving Matching Quality.
PVLDB 10/11, pp. 1502-1513, 2017.

https://doi.org/10.1109/ICDE.2016.7498319
https://doi.org/10.1007/s00453-009-9369-1
https://doi.org/10.1109/BDC.2015.30
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1007/978-3-319-40229-1_2
https://doi.org/10.1007/978-3-319-40229-1_2
http://www.vldb.org/pvldb/vol11/p1165-he.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15%5C_Paper27.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15%5C_Paper27.pdf
https://doi.org/10.1145/3035918.3064034
https://doi.org/10.1145/3035918.3064034

324 Aslihan Ozmen, Mahdi Esmailoghli, Ziawasch Abedjan

[Le66]

[Mo15]

[Ro17]

[SG12]

[Sil6]

[Yal2]

Levenshtein, V.1.: Binary codes capable of correcting deletions, insertions, and
reversals. In: Soviet physics doklady. Vol. 10. 8, pp. 707-710, 1966.

Morcos, J.; Abedjan, Z.; Ilyas, 1. F.; Ouzzani, M.; Papotti, P.; Stonebraker, M.:
DataXFormer: An Interactive Data Transformation Tool. In: SIGMOD. ACM,
pp.883—888,2015,URL:https://doi.org/l@.1145/2723372.2735366

Rolim, R.; Soares, G.; D’Antoni, L.; Polozov, O.; Gulwani, S.; Gheyi, R.;
Suzuki, R.; Hartmann, B.: Learning syntactic program transformations from
examples. In: Proceedings of ICSE. IEEE, pp. 404—415, 2017, UrRL: https:
//doi.org/10.1109/ICSE.2017.44.

Singh, R.; Gulwani, S.: Learning Semantic String Transformations from Ex-
amples. CoRR abs/1204.6079/, 2012, arXiv: 1204.6079, URL: http://arxiv.
org/abs/1204.6079.

Singh, R.: BlinkFill: Semi-supervised Programming By Example for Syntactic
String Transformations. Proc. VLDB Endow. 9/10, pp. 816-827, 2016, URL:
http://www.vldb.org/pvldb/vol9/p816-singh.pdf.

Yakout, M.; Ganjam, K.; Chakrabarti, K.; Chaudhuri, S.: Infogather: entity
augmentation and attribute discovery by holistic matching with web tables. In:
SIGMOD. Pp. 97-108, 2012.

https://doi.org/10.1145/2723372.2735366
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1109/ICSE.2017.44
http://arxiv.org/abs/1204.6079
http://arxiv.org/abs/1204.6079
http://www.vldb.org/pvldb/vol9/p816-singh.pdf

