Seidl, ThomasFries, SergejBoden, BrigitteMarkl, VolkerSaake, GunterSattler, Kai-UweHackenbroich, GregorMitschang, BernhardHärder, TheoKöppen, Veit2018-10-242018-10-242013978-3-88579-608-4https://dl.gi.de/handle/20.500.12116/17354Data analytics gets faced with huge and tremendously increasing amounts of data for which MapReduce provides a very convenient and effective distributed programming model. Various algorithms already support massive data analysis on computer clusters but, in particular, distance-based similarity self-joins lack efficient solutions for large vector data sets though they are fundamental in many data mining tasks including clustering, near-duplicate detection or outlier analysis. Our novel distance-based self-join algorithm for MapReduce, MR-DSJ, is based on grid partitioning and delivers correct, complete, and inherently duplicate-free results in a single iteration. Additionally we propose several filter techniques which reduce the runtime and communication of the MR-DSJ algorithm. Analytical and experimental evaluations demonstrate the superiority over other join algorithms for MapReduce.enMR-DSJ: distance-based self-join for large-scale vector data analysis with mapreduceText/Conference Paper1617-5468