Yeleshetty, DeepakSpreeuwers, LuukLi, YanBrömme, ArslanBusch, ChristophDantcheva, AntitzaRaja, KiranRathgeb, ChristianUhl, Andreas2020-09-162020-09-162020978-3-88579-700-5https://dl.gi.de/handle/20.500.12116/34323This paper presents a method to recognize cows using their 3D face point clouds. Face is chosen because of the rigid structure of the skull compared to other parts. The 3D face point clouds are acquired using a newly designed dual 3D camera setup. After registering the 3D faces to a specific pose, the cow’s ID is determined by running Iterative Closest Point (ICP) method on the probe against all the point clouds in the gallery. The root mean square error (RMSE) between the ICP correspondences is used to identify the cows. The smaller the RMSE, the more likely that the cow is from the same class. In a closed set of 32 cows with 5 point clouds per cow in the gallery, the ICP recognition demonstrates an almost perfect identification rate of 99.53%.enCowsBiometricsVisual identification3D face recognitionPointcloud registrationIterative Closest PointRealsense cameras.3D Face Recognition For CowsText/Conference Paper1617-5468