Copurkuyu,MazlumBarton,ThomasDemmler, DanielKrupka, DanielFederrath, Hannes2022-09-282022-09-282022978-3-88579-720-3https://dl.gi.de/handle/20.500.12116/39579Durch die große Menge an wissenschaftlichen Publikationen, die meist als unstrukturierte Daten vorliegt, nehmen Komplexität und Arbeitsaufwand eines Literature-Review Prozesses stetig zu. Auch im Forschungsgebiet Quantum Computing hat sich die Anzahl wissenschaftlicher Veröffentlichungen in den letzten Jahren stark erhöht. Dieser Beitrag gibt einen Überblick, wie man Text-Mining-Methoden zur Informationsextraktion bei der Literaturrecherche zu Quantum Computing einsetzen kann. Das zentrale Forschungsziel besteht in der Anwendung von Text-Mining zur automatischen Extraktion und Visualisierung von Schlüsselwörtern auf Basis der Abstracts von wissenschaftlichen Publikationen. Dieser Ansatz verwendet zum einen die TF-IDF-Methode und auf der anderen Seite den Word2Vec-Algorithmus, um die automatische Erfassung sowie die Verarbeitung relevanter Literatur zu ermöglichen. Anschließend wird eine visuelle Darstellung der Ergebnisse wie z.B. dynamische Word-Clouds durchgeführt. Aus der Analyse werden Erkenntnisse für den Forschungsbereich Quantum Computing abgeleitet.deLiteraturrechercheText-MiningKeyword ExtractionTF-IDFWord2VecQuantum ComputingExtraktion und Analyse von Schlüsselwörtern in einer Literaturrecherche zu Quantum Computing10.18420/inf2022_761617-5468