Dohrn, FinnTropmann-Frick, MarinaKlein, MaikeKrupka, DanielWinter, CorneliaGergeleit, MartinMartin, Ludger2024-10-212024-10-212024978-3-88579-746-3https://dl.gi.de/handle/20.500.12116/45098Ziel dieser Arbeit ist die Entwicklung und Validierung eines automatisierten Prognosemodells für Gepäckmengen am Hamburger Flughafen unter Verwendung der Low-Code AutoML-Bibliothek PyCaret. Durch die Automatisierung signifikanter Phasen des Machine-Learning-Lebenszyklus konnten präzise Vorhersagen für Gepäckstücke pro Flug innerhalb und außerhalb der Flugsaison erreicht werden. Die Ergebnisse zeigen eine Verbesserung der Vorhersagegenauigkeit um 38,6 % gegenüber herkömmlichen Methoden, was die Effizienz in der Personaldisposition maßgeblich unterstützt. Der Einsatz von AutoML ermöglicht zudem eine zeitökonomische Modellentwicklung durch Endanwender. Der Einsatz und Ausbau des autoDS-Moduls kann den bereits hohen Automatisierungsgrad weiter erhöhen. Zukünftige Arbeiten sollten den Einsatz von assistenzgesteuerter Datenvorverarbeitung mit großen Sprachmodellen und Hyperparameteroptimierung für AutoML-Parameter untersuchen, um die Anwendbarkeit und Genauigkeit weiter zu verbessern.deFlughafenGepäckprognoseDatenvorverarbeitungAutoMLPyCaretAutomatisierte prädiktive Analytik in der GepäckabfertigungText/Conference Paper10.18420/inf2024_1251617-5468