Lange-Hegermann, MarkusDavid, KlausGeihs, KurtLange, MartinStumme, Gerd2019-08-272019-08-272019978-3-88579-688-6https://dl.gi.de/handle/20.500.12116/24986We algorithmically construct multi-output Gaussian process priors which satisfy linear differential equations. We parametrize all solutions of the differential equations using Gröbner bases for controllable systems. If successful, a push forward along the parametrization is the desired prior. This prior yields an interpretable machine learning model, which can combine linear differential equations with noisy data points.enGaussian processregressiondifferential equationkernelGröbner basisPriors for Linear Differential EquationsText/Conference Paper10.18420/inf2019_381617-5468