Royer, LoicPlake, ConradSchroeder, MichaelGrosse, IvoNeumann, SteffenPosch, StefanSchreiber, FalkStadler, Peter2019-02-202019-02-202009978-3-88579-251-2https://dl.gi.de/handle/20.500.12116/20312Gene prioritization based on background knowledge mined from literature has become an important method for the analysis of results from high-throughput experimental assays such as gene expression microarrays, RNAi screens and genomewide association studies. We apply our gene mention identifier, which achieved the best result of over 80% in the BioCreative II text-mining challenge [HPR+08], and show how text-mined associations can be complemented using guilt-by-association on high confidence protein interaction networks. First, we predict hand-curated gene-disease relationships in the OMIM database, Entrez Gene summaries and GeneRIFs with 37% success rate. Second, we confirm 24% of novel cell-cycle genes identified in a recent RNAi screen [KPH+07] by using text-mining and high confidence protein interactions. Moreover, we show how 71% of GOA cell-cycle annotations can be automatically recovered. Third, we devise a method to rank genes based on novelty, increasing interest, impact, and popularity.enIdentification of cancer and cell-cycle genes with protein interactions and literature miningText/Conference Paper1617-5468