Beckstette, MichaelStrothmann, DirkHomann, RomannGiegerich, RobertKurtz, StefanGiegerich, RobertStoye, Jens2019-10-112019-10-1120043-88579-382-2https://dl.gi.de/handle/20.500.12116/28676In biological sequence analysis, position specific scoring matrices (PSSMs) are widely used to represent sequence motifs. In this paper, we present a new nonheuristic algorithm, called ESAsearch, to efficiently find matches of such matrices in large databases. Our approach preprocesses the search space, e.g. a complete genome or a set of protein sequences, and builds an enhanced suffix array which is stored on file. The enhanced suffix array only requires 9 bytes per input symbol, and allows to search a database with a PSSM in sublinear expected time. We also address the problem of non-comparable PSSM-scores by developing a method which allows to efficiently compute a matrix similarity threshold for a PSSM, given an E-value or a p-value. Our method is based on dynamic programming. In contrast to other methods it employs lazy evaluation of the dynamic programming matrix: it only evaluates those matrix entries that are necessary to derive the sought similarity threshold. We tested algorithm ESAsearch with nucleotide PSSMs and with amino acid PSSMs. Compared to the best previous methods, ESAsearch show speedups of a factor between 4 and 50 for nucleotide PSSMs, and speedups up to a factor 1.8 for amino acid PSSMs. Comparisons with the most widely used programs even show speedups by a factor of at least 10. The lazy evaluation method is also much faster than previous methods, with speedups by a factor of at least 10.enPoSSuMsearch: Fast and sensitive matching of position specific scoring matrices using enhanced suffix arraysText/Conference Paper1617-5468