Auflistung nach Autor:in "Eberhardinger, Benedikt"
1 - 5 von 5
Treffer pro Seite
Sortieroptionen
- ZeitschriftenartikelAdaptive Tests for Adaptive Systems: The Need for New Concepts in Testing for Future Software Systems(Softwaretechnik-Trends Band 38, Heft 1, 2018) Eberhardinger, Benedikt; Seebach, Hella; Reichstaller, André; Knapp, Alexander; Reif, WolfgangSoftware testing plays a major role for engineering future systems that become more and more adaptive to their environment. In order to fulfill the high demand, test automation is needed as a keystone. However, test automation, as it is used today, is counting on captureand-replay-like scripting and is thus not able to keep up with intelligent systems. Therefore, we ask for an adaptive test automation and propose a model-based approach that enables self-awareness as well as awareness of the system under test which is used for automation of the test suites.
- ZeitschriftenartikelAktuelle Fragestellungen zum Zusammenspiel von BDD, MBT und KDT(Softwaretechnik-Trends Band 36, Heft 3, 2016) Eberhardinger, Benedikt; Farago, David; Friske, Mario; Sokenou, DehlaIm Folgenden werden die Ergebnisse des letzten Treffens unseres Arbeitskreises „Testen objektorientierter Programme/Modellbasiertes Testen (TOOP/MBT)“ kurz dargestellt. Das Treffen mit 21 Teilnehmern fand im Rahmen des 39. Treffens der GI-Fachgruppe „Test, Analyse und Verikation von Software (TAV)“ am 24. 06. 2016 in Bremen statt. Thema der inhaltlichen Diskussion war abermals, wie die drei Testmethoden Behavior-Driven Development (BDD), Model-Based Testing (MBT) und Keyword-Driven Testing (KDT) zusammenspielen. Anhand eines webbasierten Bankautomaten als Beispiel wurden die Vor- und Nachteile der drei Methoden betrachtet, sowie deren Zusammenspiel. Es wurden Hypothesen aufgestellt und diskutiert sowie zentrale Fragestellungen für die weitere inhaltliche Arbeit herausgearbeitet.
- ZeitschriftenartikelApplying Deep Learning For Imitating Adaptive Agent Behavior in Statistical Software Testing(Softwaretechnik-Trends Band 38, Heft 1, 2018) Reichstaller, André; Eberhardinger, Benedikt; Seebach, Hella; Knapp, Alexander; Reif, WolfgangStatistical test generation builds on profiles which describe the estimated conditions of the system under test’s environment. Such environmental profiles, however, do not directly provide us with inputs for testing particular system components, as those mostly depend on the output of others. We thus a additionally need to estimate this output if we want to maintain statistical accuracy. Instantiating this task for the isolated testing of self-organization mechanisms between adaptive agents, this paper investigates the application of deep learning techniques for imitating the agents’ output. The proposed technique is evaluated on a simulated self-organizing grid of power plants.
- ZeitschriftenartikelDrei Methoden, ein Ziel: Testautomatisierung mit BDD, MBT und KDT im Vergleich(Softwaretechnik-Trends Band 36, Heft 3, 2015) Brandes, Christian; Eberhardinger, Benedikt; Faragó, David; Friske, Mario; Güldali, Baris; Pietschker, Andrej
- ZeitschriftenartikelA Framework for Testing Self-organisation Algorithms(Softwaretechnik-Trends Band 35, Heft 1, 2015) Eberhardinger, Benedikt; Anders, Gerrit; Seebach, Hella; Siefert, Florian; Reif, WolfgangThe characteristics of self-organising, adaptive systems (SOAS) lead to a significantly higher flexibility and robustness against an ever-changing environment. This flexibility makes it hard to test these systems adequately, which is, however, inevitable in order to assure their quality. As a part of our vision of testing SOAS, we present a framework for testing selforganisation (SO) algorithms. The framework addresses the following key challenges for testing SO algorithms: state space explosion, interleaved feedback loops, and failure overlapping.