Zeitschriftenartikel

Applying Deep Learning For Imitating Adaptive Agent Behavior in Statistical Software Testing

Vorschaubild nicht verfügbar
Volltext URI
Dokumententyp
Text/Journal Article
Datum
2018
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Quelle
Softwaretechnik-Trends Band 38, Heft 1
FG TAV: Bericht und Beiträge vom Treffen der GI-Fachgruppe Test, Analyse und Verifikation von Software (TAV 41), 9. - 10. November 2017, Ratingen
Verlag
Geselllschaft für Informatik e.V.
Zusammenfassung
Statistical test generation builds on profiles which describe the estimated conditions of the system under test’s environment. Such environmental profiles, however, do not directly provide us with inputs for testing particular system components, as those mostly depend on the output of others. We thus a additionally need to estimate this output if we want to maintain statistical accuracy. Instantiating this task for the isolated testing of self-organization mechanisms between adaptive agents, this paper investigates the application of deep learning techniques for imitating the agents’ output. The proposed technique is evaluated on a simulated self-organizing grid of power plants.
Beschreibung
Reichstaller, André; Eberhardinger, Benedikt; Seebach, Hella; Knapp, Alexander; Reif, Wolfgang (2018): Applying Deep Learning For Imitating Adaptive Agent Behavior in Statistical Software Testing. Softwaretechnik-Trends Band 38, Heft 1. Bonn: Geselllschaft für Informatik e.V.. PISSN: 0720-8928. pp. 57-60. FG TAV: Bericht und Beiträge vom Treffen der GI-Fachgruppe Test, Analyse und Verifikation von Software (TAV 41), 9. - 10. November 2017, Ratingen
Schlagwörter
Zitierform
DOI
Tags