Logo des Repositoriums
 

Applying Deep Learning For Imitating Adaptive Agent Behavior in Statistical Software Testing

dc.contributor.authorReichstaller, André
dc.contributor.authorEberhardinger, Benedikt
dc.contributor.authorSeebach, Hella
dc.contributor.authorKnapp, Alexander
dc.contributor.authorReif, Wolfgang
dc.date.accessioned2023-03-02T10:35:46Z
dc.date.available2023-03-02T10:35:46Z
dc.date.issued2018
dc.description.abstractStatistical test generation builds on profiles which describe the estimated conditions of the system under test’s environment. Such environmental profiles, however, do not directly provide us with inputs for testing particular system components, as those mostly depend on the output of others. We thus a additionally need to estimate this output if we want to maintain statistical accuracy. Instantiating this task for the isolated testing of self-organization mechanisms between adaptive agents, this paper investigates the application of deep learning techniques for imitating the agents’ output. The proposed technique is evaluated on a simulated self-organizing grid of power plants.en
dc.identifier.pissn0720-8928
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40525
dc.language.isoen
dc.publisherGeselllschaft für Informatik e.V.
dc.relation.ispartofSoftwaretechnik-Trends Band 38, Heft 1
dc.titleApplying Deep Learning For Imitating Adaptive Agent Behavior in Statistical Software Testingen
dc.typeText/Journal Article
gi.citation.endPage60
gi.citation.publisherPlaceBonn
gi.citation.startPage57
gi.conference.sessiontitleFG TAV: Bericht und Beiträge vom Treffen der GI-Fachgruppe Test, Analyse und Verifikation von Software (TAV 41), 9. - 10. November 2017, Ratingen

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
4_41_GI-TAV_paper_1.pdf
Größe:
586.42 KB
Format:
Adobe Portable Document Format