Auflistung nach Autor:in "Lensches, Clara"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragEntwicklung eines automatischen Monitoringsystems für die Geburtsüberwachung bei Sauen(43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme, 2023) Wutke, Martin; Lensches, Clara; Witte, Jan-Hendrik; Gerberding, Johann; Lieboldt, Marc-Alexander; Traulsen, ImkeDie Überwachung des Abferkelungsverlaufs ist in der Schweinehaltung von großer Bedeutung, um auftretende Geburtsstörungen frühzeitig erkennen und geeignete Maßnahmen ergreifen zu können. Da eine zeitnahe Geburtserkennung und -betreuung aufgrund intensivierter Haltungsbedingungen oftmals nur schwer zu erzielen ist, war das Ziel der vorliegenden Studie, die Eignung neuronaler Netzwerke zur automatischen Identifikation des Geburtsmomentes zu untersuchen. Anhand einer YoloV5-Netzwerkarchitektur bestimmten wir auf Basis der Detektion unterschiedlicher Körperteile der Muttersau den potentiellen Geburtsbereich innerhalb der Abferkelbucht und identifizierten den Moment der Geburt des ersten Ferkels anhand der Objektdetektion des Ferkels innerhalb des Zielbereichs. Wir validierten unser Analysemodell durch zweistufigen Ansatz und erreichten einen Precision-, Recall- und MAP-Wert von 0.982, 0.989 und 0.993 im Rahmen der Objektdetektion sowie einen Accuracy-, Recall- und Precision-Wert von 0.9, 0.8 und 1 bei der Bestimmung des Geburtszeitpunktes.
- KonferenzbeitragUsing Deep Learning for automated birth detection during farrowing(EnviroInfo 2022, 2022) Witte, Jan-Hendrik; Gerberding, Johann; Lensches, Clara; Traulsen, ImkePig livestock farming has been undergoing major structural change for years. The number of animals per farm is constantly increasing, while competition is becoming more intense due to volatile slaughter prices. Sustainable, welfare-oriented livestock farming becomes increasingly difficult under these conditions. Studies have shown that animal-specific birth monitoring of sows can significantly reduce piglet losses. However, continuous monitoring by human staff is inconceivable, which is why systems need to be created that assist farmers in these tasks. For this reason, this paper aims to introduce the first step towards an automated birth monitoring system. The goal is to use deep learning methods from the field of computer vision to enable the detection of individual piglet births based on image data. This information can be used to develop systems that detect the beginning of a birth process, measure the duration of piglet births, and determine the time intervals between piglet births.