Logo des Repositoriums
 
Konferenzbeitrag

A framework for evaluation and exploration of clustering algorithms in subspaces of high dimensional databases

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2011

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

In high dimensional databases, traditional full space clustering methods are known to fail due to the curse of dimensionality. Thus, in recent years, subspace clustering and projected clustering approaches were proposed for clustering in high dimensional spaces. As the area is rather young, few comparative studies on the advantages and disadvantages of the different algorithms exist. Part of the underlying problem is the lack of available open source implementations that could be used by researchers to understand, compare, and extend subspace and projected clustering algorithms. In this work, we discuss the requirements for open source evaluation software and propose the OpenSubspace framework that meets these requirements. OpenSubspace integrates state-of-the-art performance measures and visualization techniques to foster clustering research in high dimensional databases.

Beschreibung

Müller, Emmanuel; Assent, Ira; Günnemann, Stephan; Gerwert, Patrick; Hannen, Matthias; Jansen, Timm; Seidl, Thomas (2011): A framework for evaluation and exploration of clustering algorithms in subspaces of high dimensional databases. Datenbanksysteme für Business, Technologie und Web (BTW). Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-274-1. pp. 347-366. Regular Research Papers. Kaiserslautern. 02.-04.03.2011

Schlagwörter

Zitierform

DOI

Tags