Logo des Repositoriums
 

P252 - Software Engineering 2016

Autor*innen mit den meisten Dokumenten  

Auflistung nach:

Neueste Veröffentlichungen

1 - 10 von 58
  • Konferenzbeitrag
    Performance-Influence Models
    (Software Engineering 2016, 2016) Siegmund, Norbert; Grebhahn, Alexander; Apel, Sven; Kästner, Christian
  • Konferenzbeitrag
    Scaling size and parameter spaces in variability-aware software performance models
    (Software Engineering 2016, 2016) Kowal, Matthias; Tschaikowski, Max; Tribastone, Mirco; Schaefer, Ina
    Model-based software performance engineering often requires the analysis of many instances of a model to find optimizations or to do capacity planning. These performance predictions get increasingly more difficult with larger models due to state space explosion as well as large parameter spaces since each configuration has its own performance model and must be analyzed in isolation (product-based (PB) analysis). We propose an efficient family-based (FB) analysis using UML activity diagrams with performance annotations. The FB analysis enables us to analyze all configurations at once using symbolic computation. Previous work has already shown that a FB analysis is significant faster than its PB counterpart. This work is an extension of our previous research lifting several limitations.
  • Konferenzbeitrag
    Intelligent code completion with Bayesian networks
    (Software Engineering 2016, 2016) Proksch, Sebastian; Lerch, Johannes; Mezini, Mira
    Code completion is an integral part of modern Integrated Development Environments (IDEs). Intelligent code completion systems can reduce long lists of type-correct proposals to relevant items. In this work, we replace an existing code completion engine named Best-Matching Neighbor (BMN) by an approach using Bayesian Networks named Pattern-based Bayesian Network (PBN).We use additional context information for more precise recommendations and apply clustering techniques to improve model sizes and to increase speed. We compare the new approach with the existing algorithm and, in addition to prediction quality, we also evaluate model size and inference speed. Our results show that the additional context information we collect improves prediction quality, and that PBN can obtain comparable prediction quality to BMN, while model size and inference speed scale better with large input sizes.
  • Konferenzbeitrag
    Automated workload characterization for I/O performance analysis in virtualized environments
    (Software Engineering 2016, 2016) Busch, Axel; Noorshams, Qais; Kounev, Samuel; Koziolek, Anne; Reussner, Ralf; Amrehn, Erich
  • Konferenzbeitrag
    LehRE: 2. Workshop “Lehre für Requirements Engineering“
    (Software Engineering 2016, 2016) Weißbach, Rüdiger; Fahsel, Jörn; Herrmann, Andrea; Hoffmann, Anne; Landes, Dieter
    LehRE ist ein Workshop über Lehre und Training für Requirements Engineering. Auf der SE2016 stehen Kompetenzorientierung und Agilität in der Lehre im Vordergrund, außerdem sollen Einsatzmöglichkeiten elektronischer Lehrplattformen in der RE-Lehre in einem Gastvortrag diskutiert werden.
  • Editiertes Buch
  • Konferenzbeitrag
    FS-MCPS: 2nd workshop on fail safety in medical cyber-physical systems
    (Software Engineering 2016, 2016) Schlaefer, Alexander; Schupp, Sibylle; Stollenwerk, André
  • Konferenzbeitrag
    EMLS16: 3rd collaborative workshop on evolution and maintenance of long-living software systems
    (Software Engineering 2016, 2016) Heinrich, Robert; Jung, Reiner; Konersmann, Marco; Schmieders, Eric
  • Konferenzbeitrag
    CSE 2016: workshop on continuous software engineering
    (Software Engineering 2016, 2016) Lichter, Horst; Brügge, Bernd; Riehle, Dirk
  • Konferenzbeitrag
    ATPS 2016: 9. Arbeitstagung Programmiersprachen
    (Software Engineering 2016, 2016) Krall, Andreas; Schaefer, Ina