GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BTW - Datenbanksysteme für Business, Technologie und Web
  • P289 - BTW2019 - Datenbanksysteme für Business, Technologie und Web
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BTW - Datenbanksysteme für Business, Technologie und Web
  • P289 - BTW2019 - Datenbanksysteme für Business, Technologie und Web
  • View Item

In-Database Machine Learning: Gradient Descent and Tensor Algebra for Main Memory Database Systems

Author:
Schüle, Maximilian [DBLP] ;
Simonis, Frédéric [DBLP] ;
Heyenbrock, Thomas [DBLP] ;
Kemper, Alfons [DBLP] ;
Günnemann, Stephan [DBLP] ;
Neumann, Thomas [DBLP]
Abstract
Machine learning tasks such as regression, clustering, and classification are typically performed outside of database systems using dedicated tools, necessitating the extraction, transfor-mation, and loading of data. We argue that database systems when extended to enable automatic differentiation, gradient descent, and tensor algebra are capable of solving machine learning tasks more efficiently by eliminating the need for costly data communication. We demonstrate our claim by implementing tensor algebra and stochastic gradient descent using lambda expressions for loss functions as a pipelined operator in a main memory database system. Our approach enables common machine learning tasks to be performed faster than by extended disk-based database systems or as well as dedicated tools by eliminating the time needed for data extraction. This work aims to incorporate gradient descent and tensor data types into database systems, allowing them to handle a wider range of computational tasks.
  • Citation
  • BibTeX
Schüle, M., Simonis, F., Heyenbrock, T., Kemper, A., Günnemann, S. & Neumann, T., (2019). In-Database Machine Learning: Gradient Descent and Tensor Algebra for Main Memory Database Systems. In: Grust, T., Naumann, F., Böhm, A., Lehner, W., Härder, T., Rahm, E., Heuer, A., Klettke, M. & Meyer, H. (Hrsg.), BTW 2019. Gesellschaft für Informatik, Bonn. (S. 247-266). DOI: 10.18420/btw2019-16
@inproceedings{mci/Schüle2019,
author = {Schüle, Maximilian AND Simonis, Frédéric AND Heyenbrock, Thomas AND Kemper, Alfons AND Günnemann, Stephan AND Neumann, Thomas},
title = {In-Database Machine Learning: Gradient Descent and Tensor Algebra for Main Memory Database Systems},
booktitle = {BTW 2019},
year = {2019},
editor = {Grust, Torsten AND Naumann, Felix AND Böhm, Alexander AND Lehner, Wolfgang AND Härder, Theo AND Rahm, Erhard AND Heuer, Andreas AND Klettke, Meike AND Meyer, Holger} ,
pages = { 247-266 } ,
doi = { 10.18420/btw2019-16 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
DateienGroesseFormatAnzeige
B6-1.pdf478.0Kb PDF View/Open

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/btw2019-16

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.18420/btw2019-16
ISBN: 978-3-88579-683-1
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2019
Language: en (en)
Collections
  • P289 - BTW2019 - Datenbanksysteme für Business, Technologie und Web [47]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.