Logo des Repositoriums
 
Textdokument

Information Retrieval for Precision Oncology

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2019

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Quelle

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

Diagnosis and treatment decisions in cancer increasingly depend on a detailed analysis of the mutational status of a patient’s genome. This analysis relies on previously published information regarding the association of variations to disease progression and possible interventions. Clinicians to a large degree use biomedical search engines to obtain such information; however, the vast majority of search results in the common search engines focuses on basic science and is clinically irrelevant. We developed the Variant-Information Search Tool, a search engine designed for the targeted search of clinically relevant publications given a mutation profile. VIST indexes all PubMed abstracts, applies advanced text mining to identify mentions of genes and variants and uses machine-learning based scoring to judge the relevancy of documents. Its functionality is available through a fast and intuitive web interface. We also performed a comparative evaluation, showing that VIST’s ranking is superior to that of PubMed or vector space models.

Beschreibung

Seva, Jurica; Goetze, Julian; Lamping, Mario; Rieke, Damian Tobias; Schaefer, Reinhold; Leser, Ulf (2019): Information Retrieval for Precision Oncology. BTW 2019. DOI: 10.18420/btw2019-39. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-683-1. pp. 533-536. Demonstrationen. Rostock. 4.-8. März 2019

Schlagwörter

Zitierform

Tags