Logo des Repositoriums
 
Konferenzbeitrag

Using feature construction for dimensionality reduction in big data scenarios to allow real time classification of sequence data

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2015

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

A sequence of transactions represents a complex and multi-dimensional type of data. Feature construction can be used to reduce the dataś dimensionality to find behavioural patterns within such sequences. The patterns can be expressed using the blue prints of the constructed relevant features. These blue prints can then be used for real time classification on other sequences.

Beschreibung

Schaidnagel, Michael; Laux, Fritz; Connolly, Thomas (2015): Using feature construction for dimensionality reduction in big data scenarios to allow real time classification of sequence data. Digital Enterprise Computing (DEC 2015). Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-638-1. pp. 259-269. Böblingen. 25.-26. June 2015

Schlagwörter

Zitierform

DOI

Tags