Logo des Repositoriums
 
Konferenzbeitrag

Expectation maximisation for sensor data fusion

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2006

Autor:innen

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

The expectation maximisation algorithm offers several applications in sensor data fusion. An overview of some of this applications and a short course in expectation maximisation algorithm and its properties is given. The expectation maximisation algorithm (EM) was introduced by Dempster, Laird and Rubin in 1977 [DLR77]. The basic of expextation maximisation is maximum likelihood estimation (MLE). In modern sensor data fusion expectation maximisation becomes a substantial part in several applications, e.g. multi target tracking with probabilistic multi hypothesis tracking (PMHT), target extraction within probability hypothesis density (PHD) filter, cluster analysis within multidimensional data association, or image computing.

Beschreibung

Opitz, Felix (2006): Expectation maximisation for sensor data fusion. INFORMATIK 2006 – Informatik für Menschen, Band 1. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-187-4. pp. 318-322. Regular Research Papers. Dresden. 2.-6. Oktober 2006

Schlagwörter

Zitierform

DOI

Tags