Konferenzbeitrag
Expectation maximisation for sensor data fusion
Lade...
Volltext URI
Dokumententyp
Text/Conference Paper
Zusatzinformation
Datum
2006
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
The expectation maximisation algorithm offers several applications in sensor data fusion. An overview of some of this applications and a short course in expectation maximisation algorithm and its properties is given. The expectation maximisation algorithm (EM) was introduced by Dempster, Laird and Rubin in 1977 [DLR77]. The basic of expextation maximisation is maximum likelihood estimation (MLE). In modern sensor data fusion expectation maximisation becomes a substantial part in several applications, e.g. multi target tracking with probabilistic multi hypothesis tracking (PMHT), target extraction within probability hypothesis density (PHD) filter, cluster analysis within multidimensional data association, or image computing.