Logo des Repositoriums
 
Konferenzbeitrag

The Impact of Time on Hashtag Reuse in Twitter: A Cognitive-Inspired Hashtag Recommendation Approach

Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2019

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

In our work [KPL17], we study temporal usage patterns of Twitter hashtags, and we use the Base-Level Learning (BLL) equation from the cognitive architecture ACT-R [An04] to model how a person reuses her own, individual hashtags as well as hashtags from her social network. The BLL equation accounts for the time-dependent decay of item exposure in human memory. According to BLL, the usefulness of a piece of information (e.g., a hashtag) is defined by how frequently and how recently it was used in the past, following a time-dependent decay that is best modeled with a power-law distribution. We used the BLL equation in our previous work to recommend tags in social bookmarking systems [KL16]. Here [KPL17], we adopt the BLL equation to model temporal reuse patterns of individual (i.e., reusing own hashtags) and social hashtags (i.e., reusing hashtags, which has been previously used by a followee) and to build a cognitive-inspired hashtag recommendation algorithm. We demonstrate the efficacy of our approach in two empirical social networks crawled from Twitter, i.e., CompSci and Random (for details about the datasets, see [KPL17]). Our results show that our approach can outperform current state-of-the-art hashtag recommendation approaches.

Beschreibung

Lex, Elisabeth; Kowald, Dominik (2019): The Impact of Time on Hashtag Reuse in Twitter: A Cognitive-Inspired Hashtag Recommendation Approach. INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft. DOI: 10.18420/inf2019_46. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-688-6. pp. 285-286. Data Science. Kassel. 23.-26. September 2019

Zitierform

Tags