Logo des Repositoriums
 
Konferenzbeitrag

Influences in Forecast Errors for Wind and Photovoltaic Power: A Study on Machine Learning Models

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2019

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Despite the increasing importance of forecasts of renewable energy, current planning studies only address a general estimate of the forecast quality to be expected and selected forecast horizons. However, these estimates allow only a limited and highly uncertain use in the planning of electric power distribution. More reliable planning processes require considerably more information about future forecast quality. In this article, we present an in-depth analysis and comparison of influencing factors regarding uncertainty in wind and photovoltaic power forecasts, based on four different machine learning (ML) models. In our analysis, we found substantial differences in uncertainty depending on ML models, data coverage, and seasonal patterns that have to be considered in future planning studies.

Beschreibung

Schreiber, Jens; Buschin, Artjom; Sick, Bernhard (2019): Influences in Forecast Errors for Wind and Photovoltaic Power: A Study on Machine Learning Models. INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft. DOI: 10.18420/inf2019_74. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-688-6. pp. 585-598. Digitalisierung des Energiesystems. Kassel. 23.-26. September 2019

Zitierform

Tags