Logo des Repositoriums
 
Konferenzbeitrag

Visualization of anomaly detection using prediction sensitivity

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2005

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Visualization of learning-based intrusion detection methods is a challenging problem. In this paper we propose a novel method for visualization of anomaly detection and feature selection, based on prediction sensitivity. The method allows an expert to discover informative features for separation of normal and attack instances. Experiments performed on the KDD Cup dataset show that explanations provided by prediction sensitivity reveal the nature of attacks. Application of prediction sensitivity for feature selection yields a major improvement of detection accuracy.

Beschreibung

Laskov, Pavel; Rieck, Konrad; Schäfer, Christin; Müller, Klaus-Robert (2005): Visualization of anomaly detection using prediction sensitivity. Sicherheit 2005, Sicherheit – Schutz und Zuverlässigkeit. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 3-88579-391-1. pp. 197-208. Regular Research Papers. Regensburg. 5.-8. April 2005

Schlagwörter

Zitierform

DOI

Tags