Logo des Repositoriums
 
Konferenzbeitrag

Probabilistic methods for predicting protein functions in protein-protein interaction networks

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2004

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

We discuss probabilistic methods for predicting protein functions from protein-protein interaction networks. Previous work based on Markov Randon Fields is extended and compared to a general machine-learning theoretic approach. Using actual protein interaction networks for yeast from the MIPS database and GO-SLIM function assignments, we compare the predictions of the different probabilistic methods and of a standard support vector machine. It turns out that, with the currently available networks, the simple methods based on counting frequencies perform as well as the more sophisticated approaches.

Beschreibung

Best, Christoph; Zimmer, Ralf; Apostolakis, Joannis (2004): Probabilistic methods for predicting protein functions in protein-protein interaction networks. German Conference on Bioinformatics 2004, GCB 2004. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 3-88579-382-2. pp. 159-168. Regular Research Papers. Bielefeld. October 4-6, 2004

Schlagwörter

Zitierform

DOI

Tags