GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P306 - BIOSIG 2020 - Proceedings of the 19th International Conference of the Biometrics Special Interest Group
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P306 - BIOSIG 2020 - Proceedings of the 19th International Conference of the Biometrics Special Interest Group
  • View Item

Compact Models for Periocular Verification Through Knowledge Distillation

Author:
Boutros, Fadi [DBLP] ;
Damer, Naser [DBLP] ;
Fang, Meiling [DBLP] ;
Raja, Kiran [DBLP] ;
Kirchbuchner, Florian [DBLP] ;
Kuijper, Arjan [DBLP]
Abstract
Despite the wide use of deep neural network for periocular verification, achieving smaller deep learning models with high performance that can be deployed on low computational powered devices remains a challenge. In term of computation cost, we present in this paper a lightweight deep learning model with only 1.1m of trainable parameters, DenseNet-20, based on DenseNet architecture. Further, we present an approach to enhance the verification performance of DenseNet-20 via knowledge distillation. With the experiments on VISPI dataset captured with two different smartphones, iPhone and Nokia, we show that introducing knowledge distillation to DenseNet-20 training phase outperforms the same model trained without knowledge distillation where the Equal Error Rate (EER) reduces from 8.36% to 4.56% EER on iPhone data, from 5.33% to 4.64% EER on Nokia data, and from 20.98% to 15.54% EER on cross-smartphone data.
  • Citation
  • BibTeX
Boutros, F., Damer, N., Fang, M., Raja, K., Kirchbuchner, F. & Kuijper, A., (2020). Compact Models for Periocular Verification Through Knowledge Distillation. In: Brömme, A., Busch, C., Dantcheva, A., Raja, K., Rathgeb, C. & Uhl, A. (Hrsg.), BIOSIG 2020 - Proceedings of the 19th International Conference of the Biometrics Special Interest Group. Bonn: Gesellschaft für Informatik e.V.. (S. 291-298).
@inproceedings{mci/Boutros2020,
author = {Boutros, Fadi AND Damer, Naser AND Fang, Meiling AND Raja, Kiran AND Kirchbuchner, Florian AND Kuijper, Arjan},
title = {Compact Models for Periocular Verification Through Knowledge Distillation},
booktitle = {BIOSIG 2020 - Proceedings of the 19th International Conference of the Biometrics Special Interest Group},
year = {2020},
editor = {Brömme, Arslan AND Busch, Christoph AND Dantcheva, Antitza AND Raja, Kiran AND Rathgeb, Christian AND Uhl, Andreas} ,
pages = { 291-298 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
BIOSIG_2020_paper_47.pdf2.203Mb PDF View/Open

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

ISBN: 978-3-88579-700-5
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2020
Language: en (en)
Content Type: Text/Conference Paper

Keywords

  • Periocular recognition
  • Smartphone biometric verification
  • Knowledge distillation.
Collections
  • P306 - BIOSIG 2020 - Proceedings of the 19th International Conference of the Biometrics Special Interest Group [33]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.