Logo des Repositoriums
 
Textdokument

Combining Programming-by-Example with Transformation Discovery from large Databases

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2021

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Quelle

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

Data transformation discovery is one of the most tedious tasks in data preparation. In particular, the generation of transformation programs for semantic transformations is tricky because additional sources for look-up operations are necessary. Current systems for semantic transformation discovery face two major problems: either they follow a program synthesis approach that only scales to a small set of input tables, or they rely on extraction of transformation functions from large corpora, which requires the identification of exact transformations in those resources and is prone to noisy data. In this paper, we try to combine approaches to benefit from large corpora and the sophistication of program synthesis. To do so, we devise a retrieval and pruning strategy ensemble that extracts the most relevant tables for a given transformation task. The extracted resources can then be processed by a program synthesis engine to generate more accurate transformation results than state-of-the-art.

Beschreibung

özmen, Aslihan; Esmailoghli, Mahdi; Abedjan, Ziawasch (2021): Combining Programming-by-Example with Transformation Discovery from large Databases. BTW 2021. DOI: 10.18420/btw2021-16. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-705-0. pp. 313-324. Data Integration, Semantic Data Management, Streaming. Dresden. 13.-17. September 2021

Schlagwörter

Zitierform

Tags