Textdokument
Combining Programming-by-Example with Transformation Discovery from large Databases
Lade...
Volltext URI
Dokumententyp
Dateien
Zusatzinformation
Datum
2021
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Quelle
Verlag
Gesellschaft für Informatik, Bonn
Zusammenfassung
Data transformation discovery is one of the most tedious tasks in data preparation. In particular, the generation of transformation programs for semantic transformations is tricky because additional sources for look-up operations are necessary. Current systems for semantic transformation discovery face two major problems: either they follow a program synthesis approach that only scales to a small set of input tables, or they rely on extraction of transformation functions from large corpora, which requires the identification of exact transformations in those resources and is prone to noisy data. In this paper, we try to combine approaches to benefit from large corpora and the sophistication of program synthesis. To do so, we devise a retrieval and pruning strategy ensemble that extracts the most relevant tables for a given transformation task. The extracted resources can then be processed by a program synthesis engine to generate more accurate transformation results than state-of-the-art.