GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BTW - Datenbanksysteme für Business, Technologie und Web
  • P311 - BTW2021- Datenbanksysteme für Business, Technologie und Web
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BTW - Datenbanksysteme für Business, Technologie und Web
  • P311 - BTW2021- Datenbanksysteme für Business, Technologie und Web
  • View Item

Using FALCES against bias in automated decisions by integrating fairness in dynamic model ensembles

Author:
Lässig, Nico [DBLP] ;
Oppold, Sarah [DBLP] ;
Herschel, Melanie [DBLP]
Abstract
As regularly reported in the media, automated classifications and decisions based on machine learning models can cause unfair treatment of certain groups of a general population. Classically, the machine learning models are designed to make highly accurate decisions in general. When one machine learning model is not sufficient to define the possibly complex boundary between classes, multiple specialized" models are used within a model ensemble to further boost accuracy. In particular
  • Citation
  • BibTeX
Lässig, N., Oppold, S. & Herschel, M., (2021). Using FALCES against bias in automated decisions by integrating fairness in dynamic model ensembles. In: , ., , . & , . (Hrsg.), BTW 2021. Gesellschaft für Informatik, Bonn. (S. 155-174). DOI: 10.18420/btw2021-08
@inproceedings{mci/Lässig2021,
author = {Lässig, Nico AND Oppold, Sarah AND Herschel, Melanie},
title = {Using FALCES against bias in automated decisions by integrating fairness in dynamic model ensembles},
booktitle = {BTW 2021},
year = {2021},
editor = {Kai-Uwe Sattler AND Melanie Herschel AND Wolfgang Lehner} ,
pages = { 155-174 } ,
doi = { 10.18420/btw2021-08 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
DateienGroesseFormatAnzeige
A2-2.pdf2.242Mb PDF View/Open

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/btw2021-08

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.18420/btw2021-08
ISBN: 978-3-88579-705-0
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2021
Language: en (en)

Keywords

  • Model fairness
  • bias in machine learning
  • model ensembles
Collections
  • P311 - BTW2021- Datenbanksysteme für Business, Technologie und Web [23]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.