Logo des Repositoriums
 
Konferenz-Abstract

Leveraging Data Science and Social-Impact Analysis to Broaden Participation in Introductory Computer Science Courses

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Abstract

Zusatzinformation

Datum

2021

Autor:innen

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Recent trends – such as rising demand for computing courses, the emergence of Data Science as a critical skill, attention to the lack of diversity in computing workforces, and growing concerns about the social impacts of algorithmic decision-making systems – call on educators to revisit how we teach introductory computing and informatics courses. The speaker is three years into an experiment with redesigning the introductory computing course to combine data science, basic data structures, and social impacts into an introductory course meant for students across the university. The course has proven successful, attracting a diverse student population across each of gender, race, and academic interests. The talk will describe the course design, its research-based foundations, and lessons learned about addressing these trends through revitalized introductory courses.

Beschreibung

Fisler, Kati (2021): Leveraging Data Science and Social-Impact Analysis to Broaden Participation in Introductory Computer Science Courses. DELFI 2021. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-710-4. pp. 21-22. Keynotes. Online. 13.-15. September 2021

Zitierform

DOI

Tags