GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • INFORMATIK - Jahrestagung der Gesellschaft für Informatik e.V.
  • P314 - INFORMATIK 2021 - Computer Science & Sustainability
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • INFORMATIK - Jahrestagung der Gesellschaft für Informatik e.V.
  • P314 - INFORMATIK 2021 - Computer Science & Sustainability
  • View Item

Deep Learning Pipeline for Automated Visual Moth Monitoring: Insect Localization and Species Classification

Author:
Korsch, Dimitri [DBLP] ;
Bodesheim, Paul [DBLP] ;
Denzler, Joachim [DBLP]
Abstract
Biodiversity monitoring is crucial for tracking and counteracting adverse trends in population fluctuations. However, automatic recognition systems are rarely applied so far, and experts evaluate the generated data masses manually. Especially the support of deep learning methods for visual monitoring is not yet established in biodiversity research, compared to other areas like advertising or entertainment. In this paper, we present a deep learning pipeline for analyzing images captured by a moth scanner, an automated visual monitoring system of moth species developed within the AMMOD project. We first localize individuals with a moth detector and afterward determine the species of detected insects with a classifier. Our detector achieves up to 99:01% mean average precision and our classifier distinguishes 200 moth species with an accuracy of 93:13% on image cutouts depicting single insects. Combining both in our pipeline improves the accuracy for species identification in images of the moth scanner from 79:62% to 88:05%.
  • Citation
  • BibTeX
Korsch, D., Bodesheim, P. & Denzler, J., (2021). Deep Learning Pipeline for Automated Visual Moth Monitoring: Insect Localization and Species Classification. In: , . (Hrsg.), INFORMATIK 2021. Gesellschaft für Informatik, Bonn. (S. 443-460). DOI: 10.18420/informatik2021-036
@inproceedings{mci/Korsch2021,
author = {Korsch, Dimitri AND Bodesheim, Paul AND Denzler, Joachim},
title = {Deep Learning Pipeline for Automated Visual Moth Monitoring: Insect Localization and Species Classification},
booktitle = {INFORMATIK 2021},
year = {2021},
editor = {} ,
pages = { 443-460 } ,
doi = { 10.18420/informatik2021-036 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
DateienGroesseFormatAnzeige
D1-3.pdf11.04Mb PDF View/Open

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/informatik2021-036

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.18420/informatik2021-036
ISBN: 978-3-88579-708-1
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2021
Language: en (en)

Keywords

  • Biodiversity Monitoring
  • Deep Learning
  • Convolutional Neural Networks
  • Insect Detection
  • Species Classification
  • Unsupervised Part Estimation
Collections
  • P314 - INFORMATIK 2021 - Computer Science & Sustainability [168]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.