GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Fachbereiche
  • Softwaretechnik (SWT)
  • Software Engineering
  • SE 2022 - Workshops
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Fachbereiche
  • Softwaretechnik (SWT)
  • Software Engineering
  • SE 2022 - Workshops
  • View Item

Build Your Own Training Data - Synthetic Data for Object Detection in Aerial Images

Author:
Laux, Lea [DBLP] ;
Schirmer, Sebastian [DBLP] ;
Schopferer, Simon [DBLP] ;
Dauer, Johann [DBLP]
Abstract
Machine learning has become one of the most widely used techniques in artificial intelligence, especially for image processing. One of the biggest challenges in developing an accurate image processing model is to collect large amounts of data that are suffi ciently close to the real-world scenario. Ideally, real-world data is therefore used for model training. Unfortunately, real-world data is often insuffi ciently available and expensive to generate. Therefore, models are trained using synthetic data. However, there is no standardized method of how training data is generated and which properties determine the data quality. In this paper, we present fi rst steps towards the generation of large amounts of data for human detection based on aerial images. To create labeled aerial images, we are using Unreal Engine and AirSim. We report on fi rst impressions of the generated labeled aerial images and identify future challenges – current simulation tools can be used to create realistic and diverse images including labeling, but native support would be benefi cial to ease their usage.
  • Citation
  • BibTeX
Laux, L., Schirmer, S., Schopferer, S. & Dauer, J., (2022). Build Your Own Training Data - Synthetic Data for Object Detection in Aerial Images. In: Michael, J., Pfeiffer, J. & Wortmann, A. (Hrsg.), Software Engineering 2022 Workshops. Bonn: Gesellschaft für Informatik e.V.. (S. 182-190). DOI: 10.18420/se2022-ws-18
@inproceedings{mci/Laux2022,
author = {Laux, Lea AND Schirmer, Sebastian AND Schopferer, Simon AND Dauer, Johann},
title = {Build Your Own Training Data - Synthetic Data for Object Detection in Aerial Images},
booktitle = {Software Engineering 2022 Workshops},
year = {2022},
editor = {Michael, Judith AND Pfeiffer, Jérôme AND Wortmann, Andreas} ,
pages = { 182-190 } ,
doi = { 10.18420/se2022-ws-18 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
paper14.pdf16.60Mb PDF View/Open

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/se2022-ws-18

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.18420/se2022-ws-18
xmlui.MetaDataDisplay.field.date: 2022
Language: en (en)
Content Type: Text/Conference Paper

Keywords

  • Machine Learning
  • Synthetic Data
  • Simulation Environment
  • Unmanned Aircraft
  • Human Detection
Collections
  • SE 2022 - Workshops [18]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.