Logo des Repositoriums
 

SE 2022 - Workshops

Autor*innen mit den meisten Dokumenten  

Auflistung nach:

Neueste Veröffentlichungen

1 - 10 von 18
  • Konferenzbeitrag
    Methode zur Bewertung der Risikobilanz autonomer Fahrzeuge aus Sicht von Fahrzeughaltern
    (Software Engineering 2022 Workshops, 2022) Potdevin, Yannik; Nowotka, Dirk
    Wir stellen eine Methode zur Ermittlung der Risikobilanz autonomer Fahrzeuge im Vergleich zu durchschnittlicher menschlicher Fahrleistung vor. Mithilfe unserer Methode werden Fahrzeugtests zur Prüfung von autonomen Fahrzeugen entwickelt und die zugehörigen Testergebnisse bewertet. Im Rahmen von zwei Fallstudien erproben wir unsere Methode und stellen Auszüge der Ergebnisse vor.
  • Konferenzbeitrag
    Wann fahren wir autonom? Eine Untersuchung aus technischer und rechtlicher Sicht.
    (Software Engineering 2022 Workshops, 2022) Birkemeyer, Lukas; Delventhal, Marlene; Schaefer, Ina; Schmieder, Fabian
    Autonomes Fahren rückt immer mehr in den Fokus der Gesellschaft. Im Gesetz zum autonomen Fahren sieht die deutsche Bundesregierung einen Meilenstein, der die Realisierung des autonomen Fahrens ermöglicht. Dennoch sind keine serienreifen, autonomen Fahrfunktionen auf deutschen Straßen zugelassen. Wie weit sind wir noch vom Traum vom autonomen Fahren entfernt? In diesem Beitrag wird untersucht, welche offenen Fragen es aus juristischer und technischer Sicht gibt und in welchen Punkten beide Disziplinen aufeinander warten. Der aktuelle Stand wird in den Bereichen Typgenehmigung/Zulassung, Fahrerlaubnis (Führerschein) und Haftung systematisch untersucht. Mit Hilfe eines Gedankenexperiments, bei dem der menschliche Fahrer durch einen Roboterfahrer ersetzt wird, wird eine einheitliche Basis geschaffen, um automatisierte Fahrfunktionen und Fahrerassistenzsysteme zu vergleichen. Dieser Beitrag deckt offene Fragen auf, die für die Realisierung des vollständig autonomen Fahrens noch beantwortet werden müssen. Eine praktische Umsetzung erfordert eine enge interdisziplinäre Zusammenarbeit, insbesondere von Expert*innen aus den Bereichen Regulierung, Technik und Sozialwissenschaften.
  • Konferenzbeitrag
    19th Workshop on Automotive Software Engineering (ASE'22)
    (Software Engineering 2022 Workshops, 2022) Dörr, Heiko; Helke, Steffen
    Preface of the 19th Workshop on Automotive Software Engineering (ASE'22)
  • Konferenzbeitrag
    Lean Management for the Digital Workplace: A literature review on the support of Lean thinking and Lean Management methods for working in a Digital Workplace
    (Software Engineering 2022 Workshops, 2022) Friedemann, Robert; Moises, Simone
    This paper discusses effectiveness of Lean Management applied on Digital Workplaces. Over decades, methods and thinking of Lean Management has emerged in the production area and were transferred to others business areas thereinafter. Applicability of Lean Management thinking and acting on a digital workplace is going to be analyzed herein. Definitions and examples will be discussed.
  • Konferenzbeitrag
    Praxisbericht: Anforderungsmanagement zur Unterstützung im Aufbau von modernen Enterprise Architekturen in der Rubner Gruppe
    (Software Engineering 2022 Workshops, 2022) Alton, Severin
    Historisch gewachsene Enterprise Architekturen stellen jedes Unternehmen vor komplexe Heraus-forderungen. Die Transformation ganzer Systemlandschaften ist kostenintensiv und dauert mitunter Jahre. Die Fachbereiche der Unternehmen müssen auf ständige Änderungen am Markt in kürzester Zeit reagieren. Auch moderne IT-Organisationen müssen deshalb in der Lage sein, neue Anforderungen der Fachbereiche in kurzen Zeiten umzusetzen und dabei den Ressourceneinsatz so effizient wie möglich zu gestalten. Dieser Artikel beschreibt, welchen Ansatz die IT-Organisation der Rubner Gruppe gewählt hat, um die Fachbereiche mit den bestmöglichen IT-Lösungen zu versorgen.
  • Konferenzbeitrag
    Build Your Own Training Data - Synthetic Data for Object Detection in Aerial Images
    (Software Engineering 2022 Workshops, 2022) Laux, Lea; Schirmer, Sebastian; Schopferer, Simon; Dauer, Johann
    Machine learning has become one of the most widely used techniques in artificial intelligence, especially for image processing. One of the biggest challenges in developing an accurate image processing model is to collect large amounts of data that are suffi ciently close to the real-world scenario. Ideally, real-world data is therefore used for model training. Unfortunately, real-world data is often insuffi ciently available and expensive to generate. Therefore, models are trained using synthetic data. However, there is no standardized method of how training data is generated and which properties determine the data quality. In this paper, we present fi rst steps towards the generation of large amounts of data for human detection based on aerial images. To create labeled aerial images, we are using Unreal Engine and AirSim. We report on fi rst impressions of the generated labeled aerial images and identify future challenges – current simulation tools can be used to create realistic and diverse images including labeling, but native support would be benefi cial to ease their usage.
  • Konferenzbeitrag
    Professionalisation in ERP Selection Revisited II
    (Software Engineering 2022 Workshops, 2022) Humpl, Stefan
    The implementation of new ERP systems or the adaptation of existing ERP systems is a central challenge for modern companies, which is also reflected in the development of relevant job advertisements. A specific analysis of relevant job advertisements in Austria shows a professionalisation in ERP selection, but also a shift towards employing such experts in the own company versus outsourcing this expertise. Job titles and job specific requirements (competences) mentioned in job advertisements in 2017 and 2021 show a respective development. But it also becomes visible that the labour market for relevant experts is marked by a growing demand and insufficient supply, which implies that the more recent job advertisements are broader, more detailed in asking for competences, and therefore showing a hope for somehow fitting candidates.
  • Konferenzbeitrag
    Important Factors for Implementing a Resilient System
    (Software Engineering 2022 Workshops, 2022) Ploder, Christian; Janetschek, Julian; Dilger, Thomas; Bernsteiner, Reinhard
    Production systems in the context of Industry 4.0 can react flexibly to changes and failures of components by equipping the system components with some intelligence. Cyber-Physical Systems (CPS) represent a crucial technology of Industry 4.0, characterized by the integration of computation and physical processes. Future production and manufacturing plants should therefore have resilient properties in order to be able to react to faults without human intervention. In this paper, a concept for a resilient production system is discussed using the example of the Fischertechnik Learning Factory 4.0 (FTLF). In the course of this, the incidents occurring in continuous operation are determined in an observation. Based on this observation, the guidelines, strategies, prerequisites, and principles relating to the concept of resilience will be shown and discussed for the resilient architecture. The prerequisites for a resilient architecture include the absence of single points of failure and independence between the sub-components of a system. A resilient production system also requires process disruption management to handle failures with re-configurations based on previously defined possible solutions. A resilient architecture should already be taken into account in the planning and design phase, at which point all incidents that can occur in the system should be known. This fact represents a significant challenge when implementing a resilient architecture in any system.
  • Konferenzbeitrag
    Requirement Management in Enterprise Systems Projects
    (Software Engineering 2022 Workshops, 2022) Weiss, Christoph; Keckeis, Johannes
    Preface of the Workshop Requirement Management in Enterprise Systems Projects (AESP - Anforderungsmanagement in Enterprise Systems-Projekten)
  • Konferenzbeitrag
    A Multi-Platform Small Scale Drone Demonstrator for Technology Maturation of Next Generation Avionic Functions
    (Software Engineering 2022 Workshops, 2022) Pickard, Michael; Ludewig, Philipp; Halbig, Jens; Krach, Bernhard
    The emerging need for new types of airborne platforms that are to be operated in a System-of-Systems context, e.g. like the European Future Combat Air System, drives the development and maturation of new technologies for the next generation of military aircraft. A special focus is on the utilization of swarms/teams of unmanned platforms which are envisaged to be operated in highly automated collaboration with manned platforms. To accelerate the development of those technologies Airbus Defence and Space has launched a small scale demonstrator project using customized Micro Air Vehicles 2. This enables modular and agile technology integration with low threshold to get new developments airborne. A major focus of the recent activities has been the establishment and enhancement of the development environment including test benches, mission software and ground control station. However, already a fi rst set of new technologies for formation management, collaborative navigation and sensor management as well as multiple sensors like a radio frequency emitter localization sensor and an industrial camera have been integrated and tested comprehensively. In summary it can be confi rmed that there are major benefi ts in the utilization of Micro Air Vehicles as rapid prototyping platform for avionics technology maturation.