GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • GIL-Jahrestagung
  • P317 - 42. GIL-Jahrestagung 2022 - Fokus: Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • GIL-Jahrestagung
  • P317 - 42. GIL-Jahrestagung 2022 - Fokus: Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft
  • View Item

A digital weed counting system for the weed control performance evaluation

Author:
Pamornnak, Burawich [DBLP] ;
Scholz, Christian [DBLP] ;
Becker, Silke [DBLP] ;
Ruckelshausen, Arno [DBLP]
Abstract
The weed counting method is one of the keys to indicate the performance of the weed control process. This article presents a digital weed counting system to use instead of a conventional manual counting system called “Göttinger Zähl- und Schätzrahmen” or “Göttinger Rahmen” due to the limitation of human counting on big-scale field experiment areas. The proposed method demonstrated on the maize field consists of two main parts, a virtual weed counting frame and a weed counting core, respectively. The system was implemented as a mobile application for the smartphone (Android) with server-based processing. The pre-processed image on the mobile phone will be sent to the weed counting core based on the pre-trained convolution neural network model (CNN or deep learning) on the server. Finally, the number of detected weeds will be sent back to the mobile phone to show the results. In the first implementation, 100 frames on a 1-hectare field area were evaluated. The absolute weed counting errors were categorized into three groups, A-Group (0-10 weeds error) achieves 73 %, B-Group (11-20 weeds error) achieves 17 %, and C-Group (21-30 weeds error) achieves 10 %, respectively. For overall performance, the system achieves the  = 0.97 from the correlation and 12.8 % counting error. These results show the digital version of “Göttinger Rahmen” has the potential to become a practical tool for weed control evaluations.
  • Citation
  • BibTeX
Pamornnak, B., Scholz, C., Becker, S. & Ruckelshausen, A., (2022). A digital weed counting system for the weed control performance evaluation. In: Gandorfer, M., Hoffmann, C., El Benni, N., Cockburn, M., Anken, T. & Floto, H. (Hrsg.), 42. GIL-Jahrestagung, Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft. Bonn: Gesellschaft für Informatik e.V.. (S. 207-212).
@inproceedings{mci/Pamornnak2022,
author = {Pamornnak, Burawich AND Scholz, Christian AND Becker, Silke AND Ruckelshausen, Arno},
title = {A digital weed counting system for the weed control performance evaluation},
booktitle = {42. GIL-Jahrestagung, Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft},
year = {2022},
editor = {Gandorfer, Markus AND Hoffmann, Christa AND El Benni, Nadja AND Cockburn, Marianne AND Anken, Thomas AND Floto, Helga} ,
pages = { 207-212 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
GIL2022_Pamornnak_207-212.pdf1.026Mb PDF View/Open

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

ISBN: 978-3-88579-711-1
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2022
Language: en (en)
Content Type: Text/Conference Paper

Keywords

  • Göttinger Rahmen
  • weed counting
  • mobile application
  • field experiment
  • image processing
  • data labeling
  • deep learning
Collections
  • P317 - 42. GIL-Jahrestagung 2022 - Fokus: Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft [61]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.