Logo des Repositoriums
 
Konferenzbeitrag

Pollen detection from honey sediments via Region-Based Convolutional Neural Networks

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2022

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

This paper deals with the localization and classification of pollen grains in light-microscopic images from pollen samples and honey sediments. A laboratory analysis of the honey sediment offers precise information of the honey composition. By utilizing state of the art deep neural networks, we show the possibility of automatizing the process of pollen counting and identification. For that purpose, we created and labelled our own data set comprising two pollen classes and trained and evaluated a regional-based neural network. Our results show that the majority of pollen grains are correctly detected. The pollen frequency in the honey sediment is on par with the majority pollen class, however, more samples and further investigation are required to ensure stable results and practicality.

Beschreibung

Viertel, Philipp; Koenig, Matthias; Rexilius, Jan (2022): Pollen detection from honey sediments via Region-Based Convolutional Neural Networks. 42. GIL-Jahrestagung, Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-711-1. pp. 301-306. Tänikon, Online. 21.-22. Februar 2022

Zitierform

DOI

Tags