GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • GIL-Jahrestagung
  • P317 - 42. GIL-Jahrestagung 2022 - Fokus: Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • GIL-Jahrestagung
  • P317 - 42. GIL-Jahrestagung 2022 - Fokus: Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft
  • View Item

AI-supported data annotation in the context of UAV-based weed detection in sugar beet fields using Deep Neural Networks

Author:
Jonas Boysen, Jonas [DBLP] ;
Stein, Anthony [DBLP]
Abstract
Recent Deep Learning-based Computer Vision methods proved quite successful in various tasks, also involving the classification, detection and segmentation of crop and weed plants with Convolutional Neural Networks (CNNs). Such solutions require a vast amount of labeled data. The annotation is a tedious and time-consuming task, which often constitutes a limiting factor in the Machine Learning process. In this work, an approach for an annotation pipeline for UAV-based images of sugar beet fields of BBCH-scale 12 to 17 is presented. For the creation of pixel-wise annotated data, we utilize a threshold-based method for the creation of a binary plant mask, a row detection based on Hough Transform and a lightweight CNN for the classification of small, cropped images. Our findings demonstrate that an increased image data annotation efficiency can be reached by using an AI approach already at the crucial Machine Learning-process step of training data collection.
  • Citation
  • BibTeX
Jonas Boysen, J. & Stein, A., (2022). AI-supported data annotation in the context of UAV-based weed detection in sugar beet fields using Deep Neural Networks. In: Gandorfer, M., Hoffmann, C., El Benni, N., Cockburn, M., Anken, T. & Floto, H. (Hrsg.), 42. GIL-Jahrestagung, Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft. Bonn: Gesellschaft für Informatik e.V.. (S. 63-68).
@inproceedings{mci/Jonas Boysen2022,
author = {Jonas Boysen, Jonas AND Stein, Anthony},
title = {AI-supported data annotation in the context of UAV-based weed detection in sugar beet fields using Deep Neural Networks},
booktitle = {42. GIL-Jahrestagung, Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft},
year = {2022},
editor = {Gandorfer, Markus AND Hoffmann, Christa AND El Benni, Nadja AND Cockburn, Marianne AND Anken, Thomas AND Floto, Helga} ,
pages = { 63-68 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
GIL2022_Boysen_63-68.pdf258.1Kb PDF View/Open

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

ISBN: 978-3-88579-711-1
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2022
Language: en (en)
Content Type: Text/Conference Paper

Keywords

  • weed detection
  • data annotation
  • Convolutional Neural Networks
  • semantic segmentation
  • interactive AI
Collections
  • P317 - 42. GIL-Jahrestagung 2022 - Fokus: Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft [61]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.