GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P329 - BIOSIG 2022 - Proceedings of the 21st International Conference of the Biometrics Special Interest Group
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P329 - BIOSIG 2022 - Proceedings of the 21st International Conference of the Biometrics Special Interest Group
  • View Item

Model-Free Template Reconstruction Attack with Feature Converter

Author:
Muku Akasaka, Yuya Sato [DBLP]
Abstract
State-of-the-art template reconstruction attacks assume that an adversary has access to a part or whole of the functionality of a target model. However, in a practical scenario, rigid protection of the target system prevents them from gaining knowledge of the target model. In this paper, we propose a novel template reconstruction attack method utilizing a feature converter. The feature converter enables an adversary to reconstruct an image from a corresponding compromised template without knowledge about the target model. The proposed method was evaluated with qualitative and quantitative measures. We achieved the Successful Attack Rate(SAR) of 0.90 on Labeled Faces in the Wild Dataset(LFW) with compromised templates of only 1280 identities.
  • Citation
  • BibTeX
Muku Akasaka, Y. S., (2022). Model-Free Template Reconstruction Attack with Feature Converter. In: Brömme, A., Damer, N., Gomez-Barrero, M., Raja, K., Rathgeb, C., , ., Todisco, M. & Uhl, A. (Hrsg.), BIOSIG 2022. Bonn: Gesellschaft für Informatik e.V.. (S. 14-22). DOI: 10.1109/BIOSIG55365.2022.9896963
@inproceedings{mci/Muku Akasaka2022,
author = {Muku Akasaka, Yuya Sato},
title = {Model-Free Template Reconstruction Attack with Feature Converter},
booktitle = {BIOSIG 2022},
year = {2022},
editor = {Brömme, Arslan AND Damer, Naser AND Gomez-Barrero, Marta AND Raja, Kiran AND Rathgeb, Christian AND Sequeira Ana F. AND Todisco, Massimiliano AND Uhl, Andreas} ,
pages = { 14-22 } ,
doi = { 10.1109/BIOSIG55365.2022.9896963 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
01-BIOSIG_2022_paper_33.pdf6.205Mb PDF View/Open

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.1109/BIOSIG55365.2022.9896963

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.1109/BIOSIG55365.2022.9896963
ISBN: 978-3-88579-723-4
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2022
Language: en (en)
Content Type: Text/Conference Paper

Keywords

  • Template reconstruction attack
  • face recognition
  • template security
  • model inversion
Collections
  • P329 - BIOSIG 2022 - Proceedings of the 21st International Conference of the Biometrics Special Interest Group [35]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.