Model-Free Template Reconstruction Attack with Feature Converter
Author:
Abstract
State-of-the-art template reconstruction attacks assume that an adversary has access to a
part or whole of the functionality of a target model. However, in a practical scenario, rigid protection
of the target system prevents them from gaining knowledge of the target model. In this paper, we
propose a novel template reconstruction attack method utilizing a feature converter. The feature
converter enables an adversary to reconstruct an image from a corresponding compromised template
without knowledge about the target model. The proposed method was evaluated with qualitative and
quantitative measures. We achieved the Successful Attack Rate(SAR) of 0.90 on Labeled Faces in
the Wild Dataset(LFW) with compromised templates of only 1280 identities.
- Citation
- BibTeX
Muku Akasaka, Y. S.,
(2022).
Model-Free Template Reconstruction Attack with Feature Converter.
In:
Brömme, A., Damer, N., Gomez-Barrero, M., Raja, K., Rathgeb, C., , ., Todisco, M. & Uhl, A.
(Hrsg.),
BIOSIG 2022.
Bonn:
Gesellschaft für Informatik e.V..
(S. 14-22).
DOI: 10.1109/BIOSIG55365.2022.9896963
@inproceedings{mci/Muku Akasaka2022,
author = {Muku Akasaka, Yuya Sato},
title = {Model-Free Template Reconstruction Attack with Feature Converter},
booktitle = {BIOSIG 2022},
year = {2022},
editor = {Brömme, Arslan AND Damer, Naser AND Gomez-Barrero, Marta AND Raja, Kiran AND Rathgeb, Christian AND Sequeira Ana F. AND Todisco, Massimiliano AND Uhl, Andreas} ,
pages = { 14-22 } ,
doi = { 10.1109/BIOSIG55365.2022.9896963 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {Muku Akasaka, Yuya Sato},
title = {Model-Free Template Reconstruction Attack with Feature Converter},
booktitle = {BIOSIG 2022},
year = {2022},
editor = {Brömme, Arslan AND Damer, Naser AND Gomez-Barrero, Marta AND Raja, Kiran AND Rathgeb, Christian AND Sequeira Ana F. AND Todisco, Massimiliano AND Uhl, Andreas} ,
pages = { 14-22 } ,
doi = { 10.1109/BIOSIG55365.2022.9896963 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
01-BIOSIG_2022_paper_33.pdf | 6.205Mb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.1109/BIOSIG55365.2022.9896963
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISBN: 978-3-88579-723-4
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2022
Language:
(en)

Content Type: Text/Conference Paper