Logo des Repositoriums
 

Model-Free Template Reconstruction Attack with Feature Converter

dc.contributor.authorMuku Akasaka, Yuya Sato
dc.contributor.editorBrömme, Arslan
dc.contributor.editorDamer, Naser
dc.contributor.editorGomez-Barrero, Marta
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorSequeira Ana F.
dc.contributor.editorTodisco, Massimiliano
dc.contributor.editorUhl, Andreas
dc.date.accessioned2022-10-27T10:19:25Z
dc.date.available2022-10-27T10:19:25Z
dc.date.issued2022
dc.description.abstractState-of-the-art template reconstruction attacks assume that an adversary has access to a part or whole of the functionality of a target model. However, in a practical scenario, rigid protection of the target system prevents them from gaining knowledge of the target model. In this paper, we propose a novel template reconstruction attack method utilizing a feature converter. The feature converter enables an adversary to reconstruct an image from a corresponding compromised template without knowledge about the target model. The proposed method was evaluated with qualitative and quantitative measures. We achieved the Successful Attack Rate(SAR) of 0.90 on Labeled Faces in the Wild Dataset(LFW) with compromised templates of only 1280 identities.en
dc.identifier.doi10.1109/BIOSIG55365.2022.9896963
dc.identifier.isbn978-3-88579-723-4
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39685
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-329
dc.subjectTemplate reconstruction attack
dc.subjectface recognition
dc.subjecttemplate security
dc.subjectmodel inversion
dc.titleModel-Free Template Reconstruction Attack with Feature Converteren
dc.typeText/Conference Paper
gi.citation.endPage22
gi.citation.publisherPlaceBonn
gi.citation.startPage14
gi.conference.date14.-16. September 2022
gi.conference.locationDarmstadt
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
01-BIOSIG_2022_paper_33.pdf
Größe:
6.21 MB
Format:
Adobe Portable Document Format