Logo des Repositoriums
 
Konferenzbeitrag

Model-Free Template Reconstruction Attack with Feature Converter

Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2022

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

State-of-the-art template reconstruction attacks assume that an adversary has access to a part or whole of the functionality of a target model. However, in a practical scenario, rigid protection of the target system prevents them from gaining knowledge of the target model. In this paper, we propose a novel template reconstruction attack method utilizing a feature converter. The feature converter enables an adversary to reconstruct an image from a corresponding compromised template without knowledge about the target model. The proposed method was evaluated with qualitative and quantitative measures. We achieved the Successful Attack Rate(SAR) of 0.90 on Labeled Faces in the Wild Dataset(LFW) with compromised templates of only 1280 identities.

Beschreibung

Muku Akasaka, Yuya Sato (2022): Model-Free Template Reconstruction Attack with Feature Converter. BIOSIG 2022. DOI: 10.1109/BIOSIG55365.2022.9896963. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-723-4. pp. 14-22. Regular Research Papers. Darmstadt. 14.-16. September 2022

Zitierform

Tags