Deep Coupled GAN-Based Score-Level Fusion for Multi-Finger Contact to Contactless Fingerprint Matching
Abstract
Interoperability between contact to contactless images in fingerprint matching is a key
factor in the success of contactless fingerprinting devices, which have recently witnessed an increasing
demand for biometric authentication. However, due to the presence of perspective distortion
and the absence of elastic deformation in contactless fingerphotos, direct matching between contactless
fingerprint probe images and legacy contact-based gallery images produces a low accuracy. In
this paper, to improve interoperability, we propose a coupled deep learning framework that consists
of two Conditional Generative Adversarial Networks. Generative modeling is employed to find a
projection that maximizes the pairwise correlation between these two domains in a common latent
embedding subspace. Extensive experiments on three challenging datasets demonstrate significant
performance improvements over the state-of-the-art methods and two top-performing commercial
off-the-shelf SDKs, i.e., Verifinger 12.0 and Innovatrics. We also achieve a high-performance gain
by combining multiple fingers of the same subject using a score fusion model.
- Citation
- BibTeX
Md Mahedi Hasan, N. N.,
(2022).
Deep Coupled GAN-Based Score-Level Fusion for Multi-Finger Contact to Contactless Fingerprint Matching.
In:
Brömme, A., Damer, N., Gomez-Barrero, M., Raja, K., Rathgeb, C., , ., Todisco, M. & Uhl, A.
(Hrsg.),
BIOSIG 2022.
Bonn:
Gesellschaft für Informatik e.V..
(S. 150-161).
DOI: 10.1109/BIOSIG55365.2022.9897056
@inproceedings{mci/Md Mahedi Hasan2022,
author = {Md Mahedi Hasan, Nasser Nasrabadi and Jeremy Dawson},
title = {Deep Coupled GAN-Based Score-Level Fusion for Multi-Finger Contact to Contactless Fingerprint Matching},
booktitle = {BIOSIG 2022},
year = {2022},
editor = {Brömme, Arslan AND Damer, Naser AND Gomez-Barrero, Marta AND Raja, Kiran AND Rathgeb, Christian AND Sequeira Ana F. AND Todisco, Massimiliano AND Uhl, Andreas} ,
pages = { 150-161 } ,
doi = { 10.1109/BIOSIG55365.2022.9897056 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {Md Mahedi Hasan, Nasser Nasrabadi and Jeremy Dawson},
title = {Deep Coupled GAN-Based Score-Level Fusion for Multi-Finger Contact to Contactless Fingerprint Matching},
booktitle = {BIOSIG 2022},
year = {2022},
editor = {Brömme, Arslan AND Damer, Naser AND Gomez-Barrero, Marta AND Raja, Kiran AND Rathgeb, Christian AND Sequeira Ana F. AND Todisco, Massimiliano AND Uhl, Andreas} ,
pages = { 150-161 } ,
doi = { 10.1109/BIOSIG55365.2022.9897056 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
15-BIOSIG_2022_paper_14.pdf | 2.586Mb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.1109/BIOSIG55365.2022.9897056
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISBN: 978-3-88579-723-4
ISSN: 1617-5482
xmlui.MetaDataDisplay.field.date: 2022
Language:
(en)

Content Type: Text/Conference Paper