GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P329 - BIOSIG 2022 - Proceedings of the 21st International Conference of the Biometrics Special Interest Group
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P329 - BIOSIG 2022 - Proceedings of the 21st International Conference of the Biometrics Special Interest Group
  • View Item

Can point-cloud based neural networks learn fingerprint variability?

Author:
Dominik Söllinger, Robert Jöchl [DBLP]
Abstract
Subject- and environmental-specific variations affect the fingerprint recognition process. Quality metrics are capable of detecting and rating severe degradations. However, measuring natural variability, occurring during different fingerprint acquisitions, is not in the scope of these metrics. This work proposes the use of genuine comparison scores as a measure of variability. It is shown that the publicly available PLUS-MSL-FP dataset exhibits large natural variations which can be used to distinguish between different acquisition sessions. Furthermore, it is showcased that point-cloud (set) based neural networks are promising candidates for processing fingerprint imagery as they provide precise control over the input parameters. Experiments show that point-cloud based neural networks are capable of distinguishing between the different sessions in the PLUS-MSL-FP dataset solely based on FP minutiae locations.
  • Citation
  • BibTeX
Dominik Söllinger, R. J., (2022). Can point-cloud based neural networks learn fingerprint variability?. In: Brömme, A., Damer, N., Gomez-Barrero, M., Raja, K., Rathgeb, C., , ., Todisco, M. & Uhl, A. (Hrsg.), BIOSIG 2022. Bonn: Gesellschaft für Informatik e.V.. (S. 34-45). DOI: 10.1109/BIOSIG55365.2022.9897050
@inproceedings{mci/Dominik Söllinger2022,
author = {Dominik Söllinger, Robert Jöchl},
title = {Can point-cloud based neural networks learn fingerprint variability?},
booktitle = {BIOSIG 2022},
year = {2022},
editor = {Brömme, Arslan AND Damer, Naser AND Gomez-Barrero, Marta AND Raja, Kiran AND Rathgeb, Christian AND Sequeira Ana F. AND Todisco, Massimiliano AND Uhl, Andreas} ,
pages = { 34-45 } ,
doi = { 10.1109/BIOSIG55365.2022.9897050 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
03-BIOSIG_2022_paper_54.pdf6.250Mb PDF View/Open

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.1109/BIOSIG55365.2022.9897050

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.1109/BIOSIG55365.2022.9897050
ISBN: 978-3-88579-723-4
ISSN: 1617-5470
xmlui.MetaDataDisplay.field.date: 2022
Language: en (en)
Content Type: Text/Conference Paper

Keywords

  • fingerprint similarity
  • fingerprint variability
  • fingerprint ageing
  • deep learning
  • pointcloud.
Collections
  • P329 - BIOSIG 2022 - Proceedings of the 21st International Conference of the Biometrics Special Interest Group [35]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.