Low-resolution Iris Recognition via Knowledge Transfer
Author:
Abstract
This work introduces a novel approach for extremely low-resolution iris recognition based
on deep knowledge transfer. This work starts by adapting the penalty margin loss to the iris recognition
problem. This included novel analyses on the appropriate penalty margin for iris recognition.
Additionally, this work presents analyses toward finding the optimal deeply learned representation
dimension for the identity information embedded in the iris capture. Most importantly, this work
proposes a training framework that aims at producing iris deep representations from extremely lowresolution
that are similar to those of high resolution. This was realized by the controllable knowledge
transfer of an iris recognition model trained for high-resolution images into a model that is
specifically trained for extremely low-resolution irises. The presented approach leads to the reduction
of the verification errors by more than 3 folds, in comparison to the traditionally trained model
for low-resolution iris recognition.
- Citation
- BibTeX
Fadi Boutros, O. K.,
(2022).
Low-resolution Iris Recognition via Knowledge Transfer.
In:
Brömme, A., Damer, N., Gomez-Barrero, M., Raja, K., Rathgeb, C., , ., Todisco, M. & Uhl, A.
(Hrsg.),
BIOSIG 2022.
Bonn:
Gesellschaft für Informatik e.V..
(S. 293-300).
DOI: 10.1109/BIOSIG55365.2022.9896959
@inproceedings{mci/Fadi Boutros2022,
author = {Fadi Boutros, Olga Kaehm},
title = {Low-resolution Iris Recognition via Knowledge Transfer},
booktitle = {BIOSIG 2022},
year = {2022},
editor = {Brömme, Arslan AND Damer, Naser AND Gomez-Barrero, Marta AND Raja, Kiran AND Rathgeb, Christian AND Sequeira Ana F. AND Todisco, Massimiliano AND Uhl, Andreas} ,
pages = { 293-300 } ,
doi = { 10.1109/BIOSIG55365.2022.9896959 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {Fadi Boutros, Olga Kaehm},
title = {Low-resolution Iris Recognition via Knowledge Transfer},
booktitle = {BIOSIG 2022},
year = {2022},
editor = {Brömme, Arslan AND Damer, Naser AND Gomez-Barrero, Marta AND Raja, Kiran AND Rathgeb, Christian AND Sequeira Ana F. AND Todisco, Massimiliano AND Uhl, Andreas} ,
pages = { 293-300 } ,
doi = { 10.1109/BIOSIG55365.2022.9896959 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
31-BIOSIG_2022_paper_65.pdf | 376.1Kb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.1109/BIOSIG55365.2022.9896959
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISBN: 978-3-88579-723-4
ISSN: 1617-5498
xmlui.MetaDataDisplay.field.date: 2022
Language:
(en)

Content Type: Text/Conference Paper