GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P329 - BIOSIG 2022 - Proceedings of the 21st International Conference of the Biometrics Special Interest Group
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P329 - BIOSIG 2022 - Proceedings of the 21st International Conference of the Biometrics Special Interest Group
  • View Item

Low-resolution Iris Recognition via Knowledge Transfer

Author:
Fadi Boutros, Olga Kaehm [DBLP]
Abstract
This work introduces a novel approach for extremely low-resolution iris recognition based on deep knowledge transfer. This work starts by adapting the penalty margin loss to the iris recognition problem. This included novel analyses on the appropriate penalty margin for iris recognition. Additionally, this work presents analyses toward finding the optimal deeply learned representation dimension for the identity information embedded in the iris capture. Most importantly, this work proposes a training framework that aims at producing iris deep representations from extremely lowresolution that are similar to those of high resolution. This was realized by the controllable knowledge transfer of an iris recognition model trained for high-resolution images into a model that is specifically trained for extremely low-resolution irises. The presented approach leads to the reduction of the verification errors by more than 3 folds, in comparison to the traditionally trained model for low-resolution iris recognition.
  • Citation
  • BibTeX
Fadi Boutros, O. K., (2022). Low-resolution Iris Recognition via Knowledge Transfer. In: Brömme, A., Damer, N., Gomez-Barrero, M., Raja, K., Rathgeb, C., , ., Todisco, M. & Uhl, A. (Hrsg.), BIOSIG 2022. Bonn: Gesellschaft für Informatik e.V.. (S. 293-300). DOI: 10.1109/BIOSIG55365.2022.9896959
@inproceedings{mci/Fadi Boutros2022,
author = {Fadi Boutros, Olga Kaehm},
title = {Low-resolution Iris Recognition via Knowledge Transfer},
booktitle = {BIOSIG 2022},
year = {2022},
editor = {Brömme, Arslan AND Damer, Naser AND Gomez-Barrero, Marta AND Raja, Kiran AND Rathgeb, Christian AND Sequeira Ana F. AND Todisco, Massimiliano AND Uhl, Andreas} ,
pages = { 293-300 } ,
doi = { 10.1109/BIOSIG55365.2022.9896959 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
31-BIOSIG_2022_paper_65.pdf376.1Kb PDF View/Open

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.1109/BIOSIG55365.2022.9896959

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.1109/BIOSIG55365.2022.9896959
ISBN: 978-3-88579-723-4
ISSN: 1617-5498
xmlui.MetaDataDisplay.field.date: 2022
Language: en (en)
Content Type: Text/Conference Paper

Keywords

  • Iris recognition
  • knowledge transfer
  • deep learning
Collections
  • P329 - BIOSIG 2022 - Proceedings of the 21st International Conference of the Biometrics Special Interest Group [35]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.