Extracting Production Style Features of Educational Videos with Deep Learning
Author:
Abstract
Enforced by the pandemic, the production of videos in educational settings and their availability on learning platforms allow new forms of video-based learning. This has a strong benefit of covering multiple topics with different design styles and facilitating the learning experience. Consequently, research interest in video-based learning has increased remarkably, with many studies focusing on examining the diverse visual properties of videos and their impact on learner engagement and knowledge gain. However, manually analysing educational videos to collect metadata and to classify videos for quality assessment is a time-consuming activity. In this paper, we address the problem of automatic video feature extraction related to video production design. To this end, we introduce a novel use case for object detection models to recognize the human embodiment and the type of teaching media used in the video. The results obtained on a small-scale custom dataset show the potential of deep learning models for visual video analysis. This will allow for future use in developing an automatic video assessment system to reduce the workload for teachers and researchers.
- Citation
- BibTeX
Maya, F., Krieter, P., Wolf, K. D. & Breiter, A.,
(2022).
Extracting Production Style Features of Educational Videos with Deep Learning.
In:
Mandausch, M. & Henning, P. A.
(Hrsg.),
Proceedings of DELFI Workshops 2022.
Bonn:
Gesellschaft für Informatik e.V..
(S. 123-132).
DOI: 10.18420/delfi2022-ws-23
@inproceedings{mci/Maya2022,
author = {Maya, Fatima AND Krieter, Philipp AND Wolf, Karsten D. AND Breiter, Andreas},
title = {Extracting Production Style Features of Educational Videos with Deep Learning},
booktitle = {Proceedings of DELFI Workshops 2022},
year = {2022},
editor = {Mandausch, Martin AND Henning, Peter A.} ,
pages = { 123-132 } ,
doi = { 10.18420/delfi2022-ws-23 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {Maya, Fatima AND Krieter, Philipp AND Wolf, Karsten D. AND Breiter, Andreas},
title = {Extracting Production Style Features of Educational Videos with Deep Learning},
booktitle = {Proceedings of DELFI Workshops 2022},
year = {2022},
editor = {Mandausch, Martin AND Henning, Peter A.} ,
pages = { 123-132 } ,
doi = { 10.18420/delfi2022-ws-23 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
DELFI 2022 Workshops-23-Fatima Maya et al.pdf | 489.1Kb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/delfi2022-ws-23
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
xmlui.MetaDataDisplay.field.date: 2022
Language:
(en)

Content Type: Text/Conference Paper
Keywords
Collections
- DELFI 2022 Workshops [30]