GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BTW - Datenbanksysteme für Business, Technologie und Web
  • P331 - BTW2023- Datenbanksysteme für Business, Technologie und Web
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BTW - Datenbanksysteme für Business, Technologie und Web
  • P331 - BTW2023- Datenbanksysteme für Business, Technologie und Web
  • View Item

Detection of Generated Text Reviews by Leveraging Methods from Authorship Attribution: Predictive Performance vs. Resourcefulness

Author:
Moosleitner, Manfred [DBLP] ;
Specht, Günther [DBLP] ;
Zangerle, Eva [DBLP]
Abstract
Textual reviews are an integral part of online shopping and a source of information for potential customers. However, a prerequisite is that the reviews are authentic. To this end, pre-trained large language models have been shown to generate convincing text reviews at scale. Therefore, a critical task is the automatic detection of reviews not composed by a human, in a generated review classification task. State-of-the-art approaches to detect generated texts use pre-trained large language models, which exhibit hefty hardware requirements to run and fine-tune the model. Related work has shown that texts generated by language models often show differences in writing style and choice of words compared to texts written by humans. This two properties, which are unique per author, should be able to be utilized to identify if a text is generated by these algorithms. In this paper, we investigate the performance of features prominently used in authorship attribution tasks, using robust classifiers with substantially lower computational resources required. We show that features and methods from authorship attribution can be successfully applied for the task of detecting generated text reviews, leveraging the consistent writing style exhibited by large language models like GPT2. We argue that our approach achieves similar performance as state-of-the-art approaches while providing shorter training times and lower hardware requirements, necessary for, e.g, detection on the fly.
  • Citation
  • BibTeX
Moosleitner, M., Specht, G. & Zangerle, E., (2023). Detection of Generated Text Reviews by Leveraging Methods from Authorship Attribution: Predictive Performance vs. Resourcefulness. In: König-Ries, B., Scherzinger, S., Lehner, W. & Vossen, G. (Hrsg.), BTW 2023. Gesellschaft für Informatik e.V.. DOI: 10.18420/BTW2023-11
@inproceedings{mci/Moosleitner2023,
author = {Moosleitner, Manfred AND Specht, Günther AND Zangerle, Eva},
title = {Detection of Generated Text Reviews by Leveraging Methods from Authorship Attribution: Predictive Performance vs. Resourcefulness},
booktitle = {BTW 2023},
year = {2023},
editor = {König-Ries, Birgitta AND Scherzinger, Stefanie AND Lehner, Wolfgang AND Vossen, Gottfried} ,
doi = { 10.18420/BTW2023-11 },
publisher = {Gesellschaft für Informatik e.V.},
address = {}
}
DateienGroesseFormatAnzeige
B2-4.pdf287.5Kb PDF View/Open

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/BTW2023-11

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.18420/BTW2023-11
ISBN: 978-3-88579-725-8
xmlui.MetaDataDisplay.field.date: 2023
Language: en (en)
Content Type: Text/Conference Paper

Keywords

  • Text Classification
  • Stylometric Text Features
  • Generated Text Detection
Collections
  • P331 - BTW2023- Datenbanksysteme für Business, Technologie und Web [80]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.