Logo des Repositoriums
 
Konferenzbeitrag

Classification of Music Preferences Using EEG Data in Machine Learning Models

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2024

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

In this paper, we investigate how EEG data can be used to predict individual music preferences. Our study relies on machine learning and specially developed models such as EEGNet to analyze participants' brain activity while listening to music. Participants listened to music excerpts, rated them, and their EEG data were recorded. We extracted relevant features from the EEG data and used convolutional neural networks (CNNs) to classify music preferences. Our results show that our models are able to predict music preferences with an accuracy of up to 69%. This confirms the potential of EEG in personalized music recommendation and demonstrates the feasibility of integrating EEG into wearable devices to improve the user experience.

Beschreibung

Vedder, Helen; Stano, Fabio; Knierim, Michael (2024): Classification of Music Preferences Using EEG Data in Machine Learning Models. Mensch und Computer 2024 - Workshopband. DOI: 10.18420/muc2024-mci-src-324. Gesellschaft für Informatik e.V.. MCI: Student Research Competition. Karlsruhe. 1.-4. September 2024

Zitierform

Tags