GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Fachbereiche
  • Mensch-Computer-Interaktion (MCI)
  • Usability Professionals
  • UP 2017
  • Tagungsband UP17
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Fachbereiche
  • Mensch-Computer-Interaktion (MCI)
  • Usability Professionals
  • UP 2017
  • Tagungsband UP17
  • View Item

Machine Learning for User Learning

Author:
Schuhmacher, Janina [DBLP]
Abstract
To guide users through their business application’s functionality requires an intelligent digital assistance system to adapt to the user’s stage of expertise. Drawing on event segmentation theory and knowledge space theory, we propose to model the users’ domain specific knowledge and their learning process dynamically in the interaction between system and user. In the support process, the system retrieves the support content that matches the user’s knowledge state from a hierarchically organized case base. Using case-based reasoning as a psychologically inspired machine learning method facilitates incorporating the user’s feedback in the interaction: the system continuously updates its user model to learn how to support the user most efficiently and effectively.
  • Citation
  • BibTeX
Schuhmacher, J., (2017). Machine Learning for User Learning. In: Hess, S. & Fischer, H. (Hrsg.), Mensch und Computer 2017 - Usability Professionals. Regensburg: Gesellschaft für Informatik e.V.. DOI: 10.18420/muc2017-up-0127
@inproceedings{mci/Schuhmacher2017,
author = {Schuhmacher, Janina},
title = {Machine Learning for User Learning},
booktitle = {Mensch und Computer 2017 - Usability Professionals},
year = {2017},
editor = {Hess, Steffen AND Fischer, Holger} ,
doi = { 10.18420/muc2017-up-0127 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Regensburg}
}
DateienGroesseFormatAnzeige
2017_UP_127.pdf277.8Kb PDF View/Open

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/muc2017-up-0127

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.18420/muc2017-up-0127
xmlui.MetaDataDisplay.field.date: 2017
Language: de (de)
Content Type: Text/Conference Paper

Keywords

  • machine learning
  • Psychologie
  • digitales Assistenzsystem
  • User Model
  • Case Based Reasoning
Collections
  • Tagungsband UP17 [61]
  • Usability Professionals (UP17) [61]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.