Machine Learning for User Learning
Author:
Abstract
To guide users through their business application’s functionality requires an intelligent digital assistance system to adapt to the user’s stage of expertise. Drawing on event segmentation theory and knowledge space theory, we propose to model the users’ domain specific knowledge and their learning process dynamically in the interaction between system and user. In the support process, the system retrieves the support content that matches the user’s knowledge state from a hierarchically organized case base. Using case-based reasoning as a psychologically inspired machine learning method facilitates incorporating the user’s feedback in the interaction: the system continuously updates its user model to learn how to support the user most efficiently and effectively.
- Citation
- BibTeX
Schuhmacher, J.,
(2017).
Machine Learning for User Learning.
In:
Hess, S. & Fischer, H.
(Hrsg.),
Mensch und Computer 2017 - Usability Professionals.
Regensburg:
Gesellschaft für Informatik e.V..
DOI: 10.18420/muc2017-up-0127
@inproceedings{mci/Schuhmacher2017,
author = {Schuhmacher, Janina},
title = {Machine Learning for User Learning},
booktitle = {Mensch und Computer 2017 - Usability Professionals},
year = {2017},
editor = {Hess, Steffen AND Fischer, Holger} ,
doi = { 10.18420/muc2017-up-0127 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Regensburg}
}
author = {Schuhmacher, Janina},
title = {Machine Learning for User Learning},
booktitle = {Mensch und Computer 2017 - Usability Professionals},
year = {2017},
editor = {Hess, Steffen AND Fischer, Holger} ,
doi = { 10.18420/muc2017-up-0127 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Regensburg}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
2017_UP_127.pdf | 277.8Kb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/muc2017-up-0127
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
xmlui.MetaDataDisplay.field.date: 2017
Language:
(de)

Content Type: Text/Conference Paper