Konferenzbeitrag
Preserving Recomputability of Results from Big Data Transformation Workflows
Lade...
Volltext URI
Dokumententyp
Text/Conference Paper
Dateien
Zusatzinformation
Datum
2017
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
The ability to recompute results from raw data at any time is important for data-driven companies to ensure data stability and to selectively incorporate new data into an already delivered data product. When external systems are used or data changes over time this becomes even more challenging. In this paper, we propose a system architecture which ensures recomputability of results from big data transformation workflows on internal and external systems by using distributed key-value data stores.