Logo des Repositoriums
 
Textdokument

Reinforcement Learning-Controlled Mitigation of Volumetric DDoS Attacks

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2022

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

This work introduces a novel approach to combine hierarchical heavy hitter algorithms with reinforcement learning to mitigate evolving volumetric distributed denial of service attacks. The goal is to alleviate the strain on the network infrastructure through early ingress filtering based on compact filter rule sets that are evaluated by fast ternary content-addressable memory. The reinforcement learning agents task is to maintain effectiveness of established filter rules even in dynamic traffic scenarios while preserving limited memory resources. Preliminary results based on synthesized traffic scenarios modelling dynamic attack patterns indicate the feasibility of our approach.

Beschreibung

Heseding, Hauke (2022): Reinforcement Learning-Controlled Mitigation of Volumetric DDoS Attacks. GI SICHERHEIT 2022. DOI: 10.18420/sicherheit2022_20. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-717-3. pp. 237-242. Doktorand·innenforum. Karlsruhe. 5.-8. April 2022

Zitierform

Tags