Logo des Repositoriums
 

Reinforcement Learning-Controlled Mitigation of Volumetric DDoS Attacks

dc.contributor.authorHeseding, Hauke
dc.contributor.editorChristian Wressnegger, Delphine Reinhardt
dc.date.accessioned2023-01-24T11:17:51Z
dc.date.available2023-01-24T11:17:51Z
dc.date.issued2022
dc.description.abstractThis work introduces a novel approach to combine hierarchical heavy hitter algorithms with reinforcement learning to mitigate evolving volumetric distributed denial of service attacks. The goal is to alleviate the strain on the network infrastructure through early ingress filtering based on compact filter rule sets that are evaluated by fast ternary content-addressable memory. The reinforcement learning agents task is to maintain effectiveness of established filter rules even in dynamic traffic scenarios while preserving limited memory resources. Preliminary results based on synthesized traffic scenarios modelling dynamic attack patterns indicate the feasibility of our approach.en
dc.identifier.doi10.18420/sicherheit2022_20
dc.identifier.isbn978-3-88579-717-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40142
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofGI SICHERHEIT 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-323
dc.subjectDistributed denial of service
dc.subjectsoftware defined networks
dc.subjecthierarchical heavy hitters
dc.subjectreinforcement learning
dc.titleReinforcement Learning-Controlled Mitigation of Volumetric DDoS Attacksen
gi.citation.endPage242
gi.citation.startPage237
gi.conference.date5.-8. April 2022
gi.conference.locationKarlsruhe
gi.conference.sessiontitleDoktorand·innenforum

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
B6-3.pdf
Größe:
700.49 KB
Format:
Adobe Portable Document Format