Logo des Repositoriums
 

Task Definition in Big Sets of Heterogeneously Structured Moodle LMS Courses

dc.contributor.authorDogaru, Teodora
dc.contributor.authorGötze, Nora
dc.contributor.authorRotelli, Daniela
dc.contributor.authorBerendsohn, Yoel
dc.contributor.authorMerceron, Agathe
dc.contributor.authorSauer, Petra
dc.contributor.editorRöpke, René
dc.contributor.editorSchroeder, Ulrik
dc.date.accessioned2023-08-30T09:09:40Z
dc.date.available2023-08-30T09:09:40Z
dc.date.issued2023
dc.description.abstractAnalysing Learning Management System (LMS) log data gives insight into student learning behaviour that can help to predict performance, and as a consequence to avoid drop-out. This contribution provides an application and an adaptation of Rotelli and Monreale’s methodology [RM22] for defining tasks in a set of 10,532 online courses collected from seven universities. Unlike [RM22], we access the log data directly from the Moodle database. Even though our data set is much bigger and more heterogeneous than the one described in [RM22], we could adapt the data selection and filtering, as well as the components’ redefinition and alignment and employ their methodology to define tasks. This work is a contribution to make log data preprocessing open, replicable and more transparent.en
dc.identifier.doi10.18420/delfi2023-71
dc.identifier.isbn978-3-88579-732-6
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/42235
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof21. Fachtagung Bildungstechnologien (DELFI)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-322
dc.subjectLMS
dc.subjectMoodle log data analysis
dc.subjectData preprocessing
dc.titleTask Definition in Big Sets of Heterogeneously Structured Moodle LMS Coursesen
dc.typeText/Conference Paper
gi.citation.endPage314
gi.citation.publisherPlaceBonn
gi.citation.startPage313
gi.conference.date11.-13. September 2023
gi.conference.locationAachen
gi.conference.reviewfull
gi.conference.sessiontitlePosterbeiträge

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
71.pdf
Größe:
400.26 KB
Format:
Adobe Portable Document Format