Task Definition in Big Sets of Heterogeneously Structured Moodle LMS Courses
dc.contributor.author | Dogaru, Teodora | |
dc.contributor.author | Götze, Nora | |
dc.contributor.author | Rotelli, Daniela | |
dc.contributor.author | Berendsohn, Yoel | |
dc.contributor.author | Merceron, Agathe | |
dc.contributor.author | Sauer, Petra | |
dc.contributor.editor | Röpke, René | |
dc.contributor.editor | Schroeder, Ulrik | |
dc.date.accessioned | 2023-08-30T09:09:40Z | |
dc.date.available | 2023-08-30T09:09:40Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Analysing Learning Management System (LMS) log data gives insight into student learning behaviour that can help to predict performance, and as a consequence to avoid drop-out. This contribution provides an application and an adaptation of Rotelli and Monreale’s methodology [RM22] for defining tasks in a set of 10,532 online courses collected from seven universities. Unlike [RM22], we access the log data directly from the Moodle database. Even though our data set is much bigger and more heterogeneous than the one described in [RM22], we could adapt the data selection and filtering, as well as the components’ redefinition and alignment and employ their methodology to define tasks. This work is a contribution to make log data preprocessing open, replicable and more transparent. | en |
dc.identifier.doi | 10.18420/delfi2023-71 | |
dc.identifier.isbn | 978-3-88579-732-6 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/42235 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | 21. Fachtagung Bildungstechnologien (DELFI) | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-322 | |
dc.subject | LMS | |
dc.subject | Moodle log data analysis | |
dc.subject | Data preprocessing | |
dc.title | Task Definition in Big Sets of Heterogeneously Structured Moodle LMS Courses | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 314 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 313 | |
gi.conference.date | 11.-13. September 2023 | |
gi.conference.location | Aachen | |
gi.conference.review | full | |
gi.conference.sessiontitle | Posterbeiträge |
Dateien
Originalbündel
1 - 1 von 1