Logo des Repositoriums
 

Our recommendation: Surprisal. A recommender system with information theory for e-learning

dc.contributor.authorRichter, Michael
dc.contributor.authorKirschenbaum, Amit
dc.contributor.editorKiesler, Natalie
dc.contributor.editorSchulz, Sandra
dc.date.accessioned2024-10-21T10:40:35Z
dc.date.available2024-10-21T10:40:35Z
dc.date.issued2024
dc.description.abstractThis paper presents the concept of an automatic recommender system, which employs an information-theoretic approach and is designed for use on e-learning platforms. The proposed approach involves the processing of text and the representation of the required text units in a high-dimensional space. This includes the representation of user responses recorded through an initial user survey as well as course descriptions. In addition to word embeddings, the vectors consist of values that represent the information content of user responses and course descriptions.en
dc.identifier.doi10.18420/delfi2024-ws-31
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/45047
dc.language.isoen
dc.pubPlaceBonn
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofProceedings of DELFI Workshops 2024
dc.relation.ispartofseriesDELFI
dc.subjectRecommender system
dc.subjectE-learning
dc.subjectinformation theory
dc.titleOur recommendation: Surprisal. A recommender system with information theory for e-learningen
dc.typeText/Conference Paper
mci.conference.date09.-11. September 2024
mci.conference.locationFulda
mci.conference.sessiontitleDELFI: Workshop
mci.document.qualitydigidoc
mci.reference.pages215-222

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
02_richter_our.pdf
Größe:
207.3 KB
Format:
Adobe Portable Document Format