Zeitschriftenartikel
Remember to Correct the Bias When Using Deep Learning for Regression!
Vorschaubild nicht verfügbar
Volltext URI
Dokumententyp
Text/Journal Article
Zusatzinformation
Datum
2023
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Springer
Zusammenfassung
When training deep learning models for least-squares regression, we cannot expect that the training error residuals of the final model, selected after a fixed training time or based on performance on a hold-out data set, sum to zero. This can introduce a systematic error that accumulates if we are interested in the total aggregated performance over many data points (e.g., the sum of the residuals on previously unseen data). We suggest adjusting the bias of the machine learning model after training as a default post-processing step, which efficiently solves the problem. The severeness of the error accumulation and the effectiveness of the bias correction are demonstrated in exemplary experiments.